Title:
|
On direct sums of $\Cal B^{(1)}$-groups (English) |
Author:
|
Metelli, Claudia |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
34 |
Issue:
|
3 |
Year:
|
1993 |
Pages:
|
587-591 |
. |
Category:
|
math |
. |
Summary:
|
A necessary and sufficient condition is given for the direct sum of two $\Cal B^{(1)}$-groups to be (quasi-isomorphic to) a $\Cal B^{(1)}$-group. A $\Cal B^{(1)}$-group is a torsionfree Abelian group that can be realized as the quotient of a finite direct sum of rank 1 groups modulo a pure subgroup of rank 1. (English) |
Keyword:
|
$\Cal B^{(1)}$-groups |
Keyword:
|
Butler groups of finite rank |
MSC:
|
20K15 |
MSC:
|
20K25 |
idZBL:
|
Zbl 0787.20031 |
idMR:
|
MR1243091 |
. |
Date available:
|
2009-01-08T18:06:37Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118616 |
. |
Related article:
|
http://dml.cz/handle/10338.dmlcz/119586 |
. |
Reference:
|
[FM] Fuchs L., Metelli C.: On a class of Butler groups.Manuscripta Math 71 (1991), 1-28. Zbl 0765.20026, MR 1094735 |
Reference:
|
[B] Höfling B.: On direct summands of Butler $\Cal B^{(1)}$-groups.to appear in Comm. in Algebra. MR 1215549 |
Reference:
|
[F II] Fuchs L.: Infinite Abelian Groups.Vol. II, Academic Press, London-New York, 1973. Zbl 0338.20063, MR 0349869 |
Reference:
|
Albrecht U.F., Goeters H.P., Megibben C.: Zero-one matrices with an application to Abelian groups.to appear in Rend. Sem. Mat. Univ. Padova. Zbl 0809.20046, MR 1257128 |
Reference:
|
Goeters H.P., Megibben C.: Quasi-isomorphism and $\Bbb Z (2)$ representations for a class of Butler groups.preprint. MR 1876211 |
Reference:
|
Goeters H.P., Ullery W.: Butler groups and lattices of types.Comment. Math. Univ. Carolinae 31 (1990), 613-619. Zbl 0717.20039, MR 1091358 |
Reference:
|
Goeters H.P., Ullery W.: Quasi-summands of a certain class of Butler groups.to appear in Proceedings of the 1991 Curacao Conference. Zbl 0806.20043, MR 1217267 |
. |