Previous |  Up |  Next

Article

Title: On direct sums of $\Cal B^{(1)}$-groups (English)
Author: Metelli, Claudia
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 34
Issue: 3
Year: 1993
Pages: 587-591
.
Category: math
.
Summary: A necessary and sufficient condition is given for the direct sum of two $\Cal B^{(1)}$-groups to be (quasi-isomorphic to) a $\Cal B^{(1)}$-group. A $\Cal B^{(1)}$-group is a torsionfree Abelian group that can be realized as the quotient of a finite direct sum of rank 1 groups modulo a pure subgroup of rank 1. (English)
Keyword: $\Cal B^{(1)}$-groups
Keyword: Butler groups of finite rank
MSC: 20K15
MSC: 20K25
idZBL: Zbl 0787.20031
idMR: MR1243091
.
Date available: 2009-01-08T18:06:37Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118616
.
Related article: http://dml.cz/handle/10338.dmlcz/119586
.
Reference: [FM] Fuchs L., Metelli C.: On a class of Butler groups.Manuscripta Math 71 (1991), 1-28. Zbl 0765.20026, MR 1094735
Reference: [B] Höfling B.: On direct summands of Butler $\Cal B^{(1)}$-groups.to appear in Comm. in Algebra. MR 1215549
Reference: [F II] Fuchs L.: Infinite Abelian Groups.Vol. II, Academic Press, London-New York, 1973. Zbl 0338.20063, MR 0349869
Reference: Albrecht U.F., Goeters H.P., Megibben C.: Zero-one matrices with an application to Abelian groups.to appear in Rend. Sem. Mat. Univ. Padova. Zbl 0809.20046, MR 1257128
Reference: Goeters H.P., Megibben C.: Quasi-isomorphism and $\Bbb Z (2)$ representations for a class of Butler groups.preprint. MR 1876211
Reference: Goeters H.P., Ullery W.: Butler groups and lattices of types.Comment. Math. Univ. Carolinae 31 (1990), 613-619. Zbl 0717.20039, MR 1091358
Reference: Goeters H.P., Ullery W.: Quasi-summands of a certain class of Butler groups.to appear in Proceedings of the 1991 Curacao Conference. Zbl 0806.20043, MR 1217267
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_34-1993-3_22.pdf 185.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo