Previous |  Up |  Next

Article

Title: On the properties of the solution set of nonconvex evolution inclusions of the subdifferential type (English)
Author: Papageorgiou, Nikolaos S.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 34
Issue: 4
Year: 1993
Pages: 673-687
.
Category: math
.
Summary: In this paper we consider nonconvex evolution inclusions driven by time dependent convex subdifferentials. First we establish the existence of a continuous selection for the solution multifunction and then we use that selection to show that the solution set is path connected. Two examples are also presented. (English)
Keyword: subdifferential operator
Keyword: function of compact type
Keyword: evolution inclusion
Keyword: continuous selection
Keyword: path connectedness
Keyword: differential variational inequalities
Keyword: nonlinear parabolic system
MSC: 34A60
MSC: 34G20
MSC: 35K55
idZBL: Zbl 0792.34014
idMR: MR1263796
.
Date available: 2009-01-08T18:07:17Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118624
.
Reference: [1] Ahmed N.U.: Existence of optimal controls for a class of systems governed by differential inclusions on a Banach space.J. Optim. Theory Appl. 50 (1986), 213-237. Zbl 0577.49025, MR 0857234
Reference: [2] Aubin J.-P., Cellina A.: Differential Inclusions.Springer, Berlin, 1984. Zbl 0538.34007, MR 0755330
Reference: [3] Barbu V.: Nonlinear Semigroups and Differential Equations in Banach Spaces.Noordhoff International Publishing, Leyden, The Netherlands, 1976. Zbl 0328.47035, MR 0390843
Reference: [4] Brezis H.: Operateurs Maximaux Monotones.North Holland, Amsterdam, 1973. Zbl 0252.47055
Reference: [5] Cellina A., Ornelas A.: Representation of the attainable set for Lipschitzian differential inclusions.Rocky Mountain J. Math. 22 (1992), 117-124. Zbl 0752.34012, MR 1159946
Reference: [6] Chang K.C.: The obstacle problem and partial differential equations with discontinuous nonlinearities.Comm. Pure and Appl. Math. 33 (1980), 117-146. Zbl 0405.35074, MR 0562547
Reference: [7] Colombo R., Fryszkowski A., Rzezuchowski T., Staicu V.: Continuous selection of solution sets of Lipschitzian differential inclusions.Funkcialaj Ekvacioj, to appear. MR 1130468
Reference: [8] DeBlasi F., Pianigiani G.: On the solution sets of nonconvex differential inclusions.Centro V. Volterra, Università di Roma II, Preprint No. 73, September 1991.
Reference: [9] Deimling K., Rao M.R.M.: On solution sets of multivalued differential equations.Applicable Analysis 28 (1988), 129-135. Zbl 0635.34014, MR 0967566
Reference: [10] Diestel J., Uhl J.: Vector Measures.Math. Surveys, Vol. 15, AMS, Providence, Rhode Island, 1977. Zbl 0521.46035, MR 0453964
Reference: [11] Dugundji J.: Topology.Allyn and Bacon Inc., Boston, 1966. Zbl 0397.54003, MR 0193606
Reference: [12] Henry C.: Differential equations with discontinuous right-hand side for planning procedures.J. Economic Theory 4 (1972), 545-551. MR 0449534
Reference: [13] Himmelberg C., Van Vleck F.: A note on solution sets of differential inclusions.Rocky Mountain J. Math. 12 (1982), 621-625. MR 0683856
Reference: [14] Hu S., Papageorgiou N.S.: On the topological regularity of the solution set of differential inclusions with constraints.J. Differential Equations, to appear. Zbl 0796.34017, MR 1264523
Reference: [15] Kenmochi N.: Some nonlinear parabolic inequalities.Israel J. Math 22 (1975), 304-331. MR 0399662
Reference: [16] Moreau J.-J.: Evolution problem associated with a moving convex set in a Hilbert space.J. Differential Equations 26 (1977), 347-374. MR 0508661
Reference: [17] Papageorgiou N.S.: On evolution inclusions associated with time dependent convex subdifferentials.Comment. Math. Univ. Carolinae 31 (1990), 517-527. Zbl 0711.34076, MR 1078486
Reference: [18] Papageorgiou N.S.: Optimal control of nonlinear evolution inclusions.J. Optim. Theory 67 (1990), 321-354. Zbl 0697.49007, MR 1080139
Reference: [19] Papageorgiou N.S.: On the solution set of differential inclusions in Banach spaces.Applicable Analysis 25 (1987), 319-329. MR 0912190
Reference: [20] Papageorgiou N.S.: Extremal solutions of evolution inclusions associated with time dependent convex subdifferentials.Math. Nachrichten 158 (1992), 219-232. Zbl 0776.34014, MR 1235307
Reference: [21] Papageorgiou N.S.: A property of the solution set of nonlinear evolution inclusions with state constraints.Mathematica Japonica 38 (1993), 559-569. Zbl 0777.34043, MR 1221027
Reference: [22] Papageorgiou N.S.: On the set of solutions of a class of nonlinear evolution inclusions.Kôdai Math. Jour. 15 (1992), 387-402. Zbl 0774.34011, MR 1189966
Reference: [23] Papageorgiou N.S.: Differential inclusions with state constraints.Proc. of the Edinburgh Math. Soc. 32 (1988), 81-97. MR 0981995
Reference: [24] Pugh C.C.: Funnel sections.J. Differential Equations 19 (1975), 270-295. Zbl 0327.34007, MR 0393678
Reference: [25] Staicu V.: Continuous selections of solution sets to evolution inclusions.SISSA, Reprint No. 42M, Trieste, Italy, March 1990.
Reference: [26] Staicu V., Wu H.: Arcwise connectedness of solution sets to Lipschitzian differential inclusions.SISSA, Reprint No. 71M, Trieste, Italy, June 1990. MR 1120387
Reference: [27] Tolstonogov A.: On the structure of the solution set for differential inclusions in a Banach space.Math. USSR Sbornik 46 (1983), 1-15. Zbl 0564.34065
Reference: [28] Wagner D.: Survey of measurable selection theorems.SIAM J. Control and Optim. 15 (1977), 859-903. Zbl 0407.28006, MR 0486391
Reference: [29] Watanabe J.: On certain nonlinear evolution equations.J. Math. Soc. Japan 25 (1973), 446-463. Zbl 0253.35053, MR 0326522
Reference: [30] Yamada Y.: On evolution equations generated by subdifferential operators.J. Fac. Sci. Univ. Tokyo 23 (1976), 491-515. Zbl 0343.34053, MR 0425701
Reference: [31] Yotsutani S.: Evolution equations associated with the subdifferentials.J. Math. Soc. Japan 31 (1978), 623-646. Zbl 0405.35043, MR 0544681
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_34-1993-4_6.pdf 267.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo