Previous |  Up |  Next

Article

Title: Two results on a partial ordering of finite sequences (English)
Author: Klazar, Martin
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 34
Issue: 4
Year: 1993
Pages: 697-705
.
Category: math
.
Summary: In the first part of the paper we are concerned about finite sequences (over arbitrary symbols) $u$ for which $Ex(u,n)=O(n)$. The function $Ex(u,n)$ measures the maximum length of finite sequences over $n$ symbols which contain no subsequence of the type $u$. It follows from the result of Hart and Sharir that the containment $ababa\prec u$ is a (minimal) obstacle to $Ex(u,n)=O(n)$. We show by means of a construction due to Sharir and Wiernik that there is another obstacle to the linear growth. In the second part of the paper we investigate whether the above containment of sequences is wqo. It is trivial that it is not but we show that the smaller family of sequences whose alternate graphs contain no $k$-path is well quasiordered by that containment. (English)
Keyword: Davenport-Schinzel sequence
Keyword: extremal problem
Keyword: linear growth
Keyword: minimal obstacle to linearity
Keyword: well quasiordering
Keyword: alternate graph
MSC: 05D99
MSC: 06A07
idZBL: Zbl 0789.05090
idMR: MR1263798
.
Date available: 2009-01-08T18:07:28Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118626
.
Reference: [1] Adamec R., Klazar M., Valtr P.: Generalized Davenport-Schinzel sequences with linear upper bound.Discrete Math. 108 (1992), 219-229. Zbl 0768.05007, MR 1189846
Reference: [2] Agarwal P.K., Sharir M., Shor P.: Sharp upper and lower bounds on the length of general Davenport-Schinzel sequences.J. Comb. Theory A 52 (1989), 228-274. Zbl 0697.05003, MR 1022320
Reference: [3] Davenport H., Schinzel A.: A combinatorial problem connected with differential equations.Amer. J. Math. 87 (1965), 684-689. Zbl 0132.00601, MR 0190010
Reference: [4] Davenport H.: A combinatorial problem connected with differential equations II.Acta Arith. 17 (1971), 363-372. Zbl 0216.30204, MR 0285401
Reference: [5] : Graphs and Orders.(I. Rival, ed.) D. Reidel Publishing Company, Dordrecht, 1985. MR 0818494
Reference: [6] Hart S., Sharir M.: Nonlinearity of Davenport-Schinzel sequences and of generalized path compression schemes.Combinatorica 6 (1986), 151-177. Zbl 0636.05003, MR 0875839
Reference: [7] Higman H.: Orderi divisibility in abstract algebras.Proc. London Math. Society 2 (1952), 326-336. MR 0049867
Reference: [8] Klazar M.: A general upper bound in Extremal theory of sequences.Comment. Math. Univ. Carolinae 33 (1992), 737-747. Zbl 0781.05049, MR 1240196
Reference: [9] Klazar M., Valtr P.: Linear sequences.submitted.
Reference: [10] Milner E.C.: Basic wqo and bqo theory.in 5. Zbl 0573.06002
Reference: [11] Nash-Williams C.St.J.A.: On well-quasi-ordering finite trees.Math. Proc. Cambridge Philos. Soc. 59 (1963), 833-835. Zbl 0122.25001, MR 0153601
Reference: [12] Robertson N., Seymour P.: Graph minors-a survey.Surveys in Combinatorics (Glasgow 1985) (I. Anderson, ed.), Cambridge Univ. Press, 153-171. Zbl 0568.05025, MR 0822774
Reference: [13] Sharir M.: Almost linear upper bounds on the length of general Davenport-Schinzel sequences.Combinatorica 7 (1987), 131-143. Zbl 0636.05004, MR 0905160
Reference: [14] Szemerédi E.: On a problem by Davenport and Schinzel.Acta Arith. 25 (1974), 213-224. MR 0335463
Reference: [15] Wiernik A., Sharir M.: Planar realization of nonlinear Davenport-Schinzel.Discrete Comput. Geometry 3 (1988), 15-47. MR 0918177
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_34-1993-4_8.pdf 215.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo