Previous |  Up |  Next

Article

Title: How subadditive are subadditive capacities? (English)
Author: O'Brien, George L.
Author: Vervaat, Wim
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 35
Issue: 2
Year: 1994
Pages: 311-324
.
Category: math
.
Summary: Subadditivity of capacities is defined initially on the compact sets and need not extend to all sets. This paper explores to what extent subadditivity holds. It presents some incidental results that are valid for all subadditive capacities. The main result states that for all hull-additive capacities (a class that contains the strongly subadditive capacities) there is countable subadditivity on a class at least as large as the universally measurable sets (so larger than the analytic sets). (English)
Keyword: capacities
Keyword: subadditive capacities
Keyword: sup measures
Keyword: hull-additive capacities
Keyword: vague and narrow topologies
Keyword: lattice of capacities
MSC: 28A05
MSC: 28A12
MSC: 28C15
idZBL: Zbl 0808.28001
idMR: MR1286578
.
Date available: 2009-01-08T18:11:15Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118670
.
Reference: [1] Anger B., Lembcke J.: Infinitely subadditive capacities as upper envelopes of measures.Z. Wahrsch. theor. verw. Gebiete 68 403-414. Zbl 0553.28002, MR 0771475
Reference: [2] Berg C., Christensen J.P.R., Ressel P.: Harmonic Analysis on Semigroups.Springer. Zbl 0619.43001, MR 0747302
Reference: [3] Choquet G.: Theory of capacities.Ann. Inst. Fourier 5 131-295. Zbl 0679.01011, MR 0080760
Reference: [4] Choquet G.: Lectures on Analysis.Benjamin. Zbl 0331.46004
Reference: [5] Dellacherie C., Meyer P.A.: Probabilities and Potential.Vol. 1, North-Holland. Zbl 0716.60001
Reference: [6] El Kaabouchi A.: Points extrémaux du convexe des mesures majorées par une capacité.C.R. Acad. Sci. Paris 313 37-40. Zbl 0777.31009, MR 1115944
Reference: [7] Fuglede B.: Capacity as a sublinear functional generalizing an integral.Danske Vid. Selsk. Mat.-Fys. Medd. 38 7. Zbl 0222.31002, MR 0291488
Reference: [8] Holwerda H., Vervaat W.: Order and topology in spaces of capacities.preprint. In: Holwerda H., {Topology and Order}, Ph.D. Thesis, Cath. Univ. Nijmegen, 1993.
Reference: [9] Norberg T., Vervaat W.: Capacities on non-Hausdorff spaces.Report 1989-11, Dept. Math., Chalmers Univ. Techn. and Univ. Göteborg. To appear in [15]. Zbl 0883.28002, MR 1465485
Reference: [10] O'Brien G.L.: Sequences of capacities, with connections to large deviation theory.Report Dept. Math. Stat. York Univ., to appear. Zbl 0847.60061
Reference: [11] O'Brien G.L.: One-sided limits of capacities.Report Dept. Math. Stat. York Univ., to appear.
Reference: [12] O'Brien G.L., Vervaat W.: Capacities, large deviations and loglog laws.in Stable Processes (eds. S. Cambanis, G. Samorodnitsky & M.S. Taqqu), pp. 43-83, Birkhäuser, Boston. MR 1119351
Reference: [13] O'Brien G.L., Vervaat W.: Capacities and large deviations: an improved toolkit.in preparation.
Reference: [14] Vervaat W.: Random upper semicontinuous functions and extremal processes.Report MS-8801, Center for Mathematics and Computer Science, Amsterdam. To appear in [15]. Zbl 0882.60003, MR 1465481
Reference: [15] Vervaat W. (editor): Probability and Lattices.CWI Tracts, Center for Math and Comp. Sci., Amsterdam, to appear. MR 1465480
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_35-1994-2_12.pdf 253.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo