Previous |  Up |  Next

Article

Title: Ergodic properties of contraction semigroups in $L_p$, $1<p<\infty$ (English)
Author: Sato, Ryotaro
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 35
Issue: 2
Year: 1994
Pages: 337-346
.
Category: math
.
Summary: Let $\{T(t):t>0\}$ be a strongly continuous semigroup of linear contractions in $L_p$, $1<p<\infty$, of a $\sigma $-finite measure space. In this paper we prove that if there corresponds to each $t>0$ a positive linear contraction $P(t)$ in $L_p$ such that $|T(t)f|\leq P(t)|f|$ for all $f\in L_p$, then there exists a strongly continuous semigroup $\{S(t):t>0\}$ of positive linear contractions in $L_p$ such that $|T(t)f|\leq S(t)|f|$ for all $t>0$ and $f\in L_p$. Using this and Akcoglu's dominated ergodic theorem for positive linear contractions in $L_p$, we also prove multiparameter pointwise ergodic and local ergodic theorems for such semigroups. (English)
Keyword: contraction semigroup
Keyword: semigroup modulus
Keyword: majorant
Keyword: pointwise ergodic \newline theorem
Keyword: pointwise local ergodic theorem
MSC: 47A35
MSC: 47B38
MSC: 47D03
MSC: 47D06
idZBL: Zbl 0814.47010
idMR: MR1286580
.
Date available: 2009-01-08T18:11:26Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118672
.
Reference: [1] Akcoglu M.A.: A pointwise ergodic theorem in $L_p$-spaces.Canad. J. Math. 27 (1975), 1075-1082. Zbl 0326.47005, MR 0396901
Reference: [2] Akcoglu M.A., Krengel U.: Two examples of local ergodic divergence.Israel J. Math. 33 (1979), 225-230. Zbl 0441.47007, MR 0571531
Reference: [3] Dunford N., Schwartz J.T.: Linear Operators. Part I: General Theory.Interscience Publishers, New York, 1958. Zbl 0635.47001, MR 1009162
Reference: [4] Émilion R.: Continuity at zero of semi-groups on $L_1$and differentiation of additive processes.Ann. Inst. H. Poincaré Probab. Statist. 21 (1985), 305-312. MR 0823078
Reference: [5] Krengel U.: Ergodic Theorems.Walter de Gruyter, Berlin, 1985. Zbl 0649.47042, MR 0797411
Reference: [6] Sato R.: A note on a local ergodic theorem.Comment. Math. Univ. Carolinae 16 (1975), 1-11. Zbl 0296.28019, MR 0365182
Reference: [7] Sato R.: Contraction semigroups in Lebesgue space.Pacific J. Math. 78 (1978), 251-259. Zbl 0363.47021, MR 0513298
Reference: [8] Starr N.: Majorizing operators between $L^p$ spaces and an operator extension of Lebesgue's dominated convergence theorem.Math. Scand. 28 (1971), 91-104. MR 0308848
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_35-1994-2_14.pdf 211.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo