Title:
|
Note on special arithmetic and geometric means (English) |
Author:
|
Alzer, Horst |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
35 |
Issue:
|
2 |
Year:
|
1994 |
Pages:
|
409-412 |
. |
Category:
|
math |
. |
Summary:
|
We prove: If $A(n)$ and $G(n)$ denote the arithmetic and geometric means of the first $n$ positive integers, then the sequence $n\mapsto nA(n)/G(n)-(n-1)A(n-1)/G(n-1)$ $(n\geq 2)$ is strictly increasing and converges to $e/2$, as $n$ tends to $\infty $. (English) |
Keyword:
|
arithmetic and geometric means |
Keyword:
|
discrete inequality |
MSC:
|
26A99 |
MSC:
|
26D15 |
MSC:
|
26D99 |
MSC:
|
40A05 |
idZBL:
|
Zbl 0806.26015 |
idMR:
|
MR1286588 |
. |
Date available:
|
2009-01-08T18:12:02Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118680 |
. |
Reference:
|
[1] Fichtenholz G.M.: Differential - und Integralrechnung, II.Dt. Verlag Wissensch., Berlin, 1979. Zbl 0900.26002, MR 0238636 |
Reference:
|
[2] Minc H., Sathre L.: Some inequalities involving $(r!)^{1/r}$.Edinburgh Math. Soc. 14 (1964/65), 41-46. MR 0162751 |
. |