Previous |  Up |  Next

Article

Title: Note on special arithmetic and geometric means (English)
Author: Alzer, Horst
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 35
Issue: 2
Year: 1994
Pages: 409-412
.
Category: math
.
Summary: We prove: If $A(n)$ and $G(n)$ denote the arithmetic and geometric means of the first $n$ positive integers, then the sequence $n\mapsto nA(n)/G(n)-(n-1)A(n-1)/G(n-1)$ $(n\geq 2)$ is strictly increasing and converges to $e/2$, as $n$ tends to $\infty $. (English)
Keyword: arithmetic and geometric means
Keyword: discrete inequality
MSC: 26A99
MSC: 26D15
MSC: 26D99
MSC: 40A05
idZBL: Zbl 0806.26015
idMR: MR1286588
.
Date available: 2009-01-08T18:12:02Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118680
.
Reference: [1] Fichtenholz G.M.: Differential - und Integralrechnung, II.Dt. Verlag Wissensch., Berlin, 1979. Zbl 0900.26002, MR 0238636
Reference: [2] Minc H., Sathre L.: Some inequalities involving $(r!)^{1/r}$.Edinburgh Math. Soc. 14 (1964/65), 41-46. MR 0162751
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_35-1994-2_22.pdf 151.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo