Previous |  Up |  Next

Article

Title: Equivariant completions (English)
Author: Megrelishvili, Michael
Language: English
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 35
Issue: 3
Year: 1994
Pages: 539-547
.
Category: math
.
Summary: An important consequence of a result of Katětov and Morita states that every metrizable space is contained in a complete metrizable space of the same dimension. We give an equivariant version of this fact in the case of a locally compact $\sigma$-compact acting group. (English)
Keyword: equivariant completion
Keyword: factorization
Keyword: dimension
MSC: 22A05
MSC: 54H11
MSC: 54H15
idZBL: Zbl 0871.54040
idMR: MR1307281
.
Date available: 2009-01-08T18:13:09Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118694
.
Reference: [1] Bourbaki N.: General Topology, Parts 1, 2.Hermann Paris (1966).
Reference: [2] Bourbaki N.: Topologie Générale, Ch. IX,X.Hermann Paris (1958). MR 0173226
Reference: [3] Bronstein I.U.: Extensions of Minimal Transformation Groups.Sijthoff & Noordhoff, Alphen aan den Rijn, 1979. MR 0550605
Reference: [4] Brook R.B.: A construction of the greatest ambit.Math. Systems Theory 4 (1970), 243-248. MR 0267038
Reference: [5] Dikranjan D.N., Prodanov I.R., Stoyanov L.N.: Topological Groups: Characters, Dualities and Minimal Group Topologies.Marcel Dekker: Pure Appl. Math. 130 (1989). MR 1015288
Reference: [6] Engelking R.: General Topology.P.W.N., Warszawa (1977). Zbl 0373.54002, MR 0500780
Reference: [7] de Groot J.: The action of a locally compact group on a metric space.Nieuw Arch. Wisk. (3) 7 (1959), 70-74. Zbl 0092.02802, MR 0124434
Reference: [8] de Groot J., Mcdowell R.H.: Extension of mappings on metric spaces.Fund. Math. 68 (1960), 251-263. Zbl 0100.18903, MR 0124026
Reference: [9] Isbell J.: Uniform Spaces.AMS, Providence, Rhode Island (1964). Zbl 0124.15601, MR 0170323
Reference: [10] Katětov M.: On the dimension of non-separable spaces I.Czech. Math. J. 2 (1952), 333-368. MR 0061372
Reference: [11] Megrelishvili M.: Quasibounded uniform $G$-spaces (in Russian).Manuscript deposited at Gruz. NIINTI (Tbilisi) on March 3, 1987, No.331-G.
Reference: [12] Megrelishvili M.: A Tychonoff $G$-space not admitting a compact Hausdorff $G$-extension or $G$-linearization.Russ. Math. Surv. 43:2 (1988), 177-178. MR 0940673
Reference: [13] Megrelishvili M.: Compactification and factorization in the category of $G$-spaces.Categorical Topology and its Relation to Analysis, Algebra and Combinatorics J. Adámek, S. MacLane World Scientific Singapore (1989), 220-237. MR 1047903
Reference: [14] Morita K.: Normal families and dimension theory in metric spaces.Math. Ann. 128, N4 (1954), 143-156. MR 0065906
Reference: [15] Peters J., Sund T.: Automorphisms of locally compact groups.Pacific J. Math. 76 (1978), 143-146. Zbl 0354.22010, MR 0578732
Reference: [16] de Vries J.: Universal topological transformation groups.General Topology and its Applications 5 (1975), 107-122. Zbl 0299.54030, MR 0372834
Reference: [17] de Vries J.: Topological Transformation Groups I: A Categorical Approach.Math. Centre Tract 65 Mathematisch Centrum, Amsterdam (1975). MR 0415586
Reference: [18] de Vries J.: On the existence of $G$-compactifications.Bull. Ac. Polon. Sci. Ser. Math. 26 (1978), 275-280. Zbl 0378.54028, MR 0644661
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_35-1994-3_12.pdf 215.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo