Title:
|
$M$-mappings make their images less cellular (English) |
Author:
|
Tkačenko, Michael G. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
35 |
Issue:
|
3 |
Year:
|
1994 |
Pages:
|
553-563 |
. |
Category:
|
math |
. |
Summary:
|
We consider $M$-mappings which include continuous mappings of spaces onto topological groups and continuous mappings of topological groups elsewhere. It is proved that if a space $X$ is an image of a product of Lindelöf $\Sigma$-spaces under an $M$-mapping then every regular uncountable cardinal is a weak precaliber for $X$, and hence $ X$ has the Souslin property. An image $X$ of a Lindelöf space under an $M$-mapping satisfies $cel_{\omega}X\le2^{\omega}$. Every $M$-mapping takes a $\Sigma(\aleph_0)$-space to an $\aleph_0$-cellular space. In each of these results, the cellularity of the domain of an $M$-mapping can be arbitrarily large. (English) |
Keyword:
|
$M$-mapping |
Keyword:
|
topological group |
Keyword:
|
Maltsev space |
Keyword:
|
$\aleph_0$-cellularity |
MSC:
|
54A25 |
MSC:
|
54C99 |
MSC:
|
54H11 |
idZBL:
|
Zbl 0840.54002 |
idMR:
|
MR1307283 |
. |
Date available:
|
2009-01-08T18:13:19Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118696 |
. |
Reference:
|
[1] ArhangelskiĭA.V.: Factorization theorems and function spaces: stability and monolithicity.Soviet Math. Dokl. 26 (1982), 177-181. |
Reference:
|
[2] ArhangelskiĭA.V., Ranchin D.V.: On dense subspaces of topological products and properties related with final compactness (in Russian).Vestnik Mosc. Univ. 1982, No.6, 21-28. |
Reference:
|
[3] Engelking R.: On functions defined on cartesian products.Fund. Math. 59 (1966), 221-231. Zbl 0158.41203, MR 0203697 |
Reference:
|
[4] Hušek M.: Productivity of properties of topological groups.Topology Appl. 44 (1992), 189-196. MR 1173257 |
Reference:
|
[5] Juhász I.: Cardinal Functions in Topology.Math. Centrum Tracts 34, Amsterdam, 1971. MR 0340021 |
Reference:
|
[6] Kombarov A.P., Malykhin V.I.: On $\Sigma$-products (in Russian).Dokl. AN SSSR 213 (1973), 774-776. MR 0339073 |
Reference:
|
[7] Maltsev A.I.: To the general theory of algebraic systems (in Russian).Mat. Sb. 35 (1954), 3-20. MR 0065533 |
Reference:
|
[8] Nagami K.: $\Sigma$-spaces.Fund. Math. 65 (1969), 169-192. Zbl 0181.50701, MR 0257963 |
Reference:
|
[9] Pasynkov B.A.: On the relative cellularity of Lindelöf subspaces of topological groups.Topol. Appl., to appear. Zbl 0803.54016, MR 1278026 |
Reference:
|
[10] Tkačenko M.G.: Some results on inverse spectra. I..Comment. Math. Univ. Carolinae 22 (1981), 621-633. MR 0633589 |
Reference:
|
[11] Tkačenko M.G.: On the Souslin property in free topological groups over compacta (in Russian).Matem. Zametki 34 (1983), 601-607. MR 0722229 |
Reference:
|
[12] Tkačenko M.G.: On mappings improving properties of their images (in Russian).Uspekhi Matem. Nauk 48 (1993), 187-188. |
Reference:
|
[13] Tkačenko M.G.: $M$-spaces and the cellularity of spaces.Topology Appl., to appear. |
Reference:
|
[14] Todorčević S.: Remarks on cellularity in products.Compositio Math. 57 (1986), 357-372. MR 0829326 |
Reference:
|
[15] Todorčević S.: Cellularity of topological groups.Handwritten notes. |
Reference:
|
[16] UspenskiĭV.V.: Topological group generated by a Lindelöf $\Sigma$-space has the Souslin property.Soviet Math. Dokl. 26 (1982), 166-169. |
Reference:
|
[17] UspenskiĭV.V.: On continuous images of Lindelöf topological groups (in Russian, translated in English).Dokl. AN SSSR 285 (1985), 824-827. MR 0821360 |
Reference:
|
[18] UspenskiĭV.V.: The Maltsev operation on countably compact spaces.Comment. Math. Univ. Carolinae 30 (1989), 395-402. MR 1014140 |
. |