Previous |  Up |  Next

Article

Title: A countably compact, separable space which is not absolutely countably compact (English)
Author: Vaughan, Jerry E.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 36
Issue: 1
Year: 1995
Pages: 197-201
.
Category: math
.
Summary: We construct a space having the properties in the title, and with the same technique, a countably compact $T_2$ topological group which is not absolutely countably compact. (English)
Keyword: countably compact
Keyword: absolutely countably compact
Keyword: topological group
Keyword: Franklin-Rajagopalan space
MSC: 22A05
MSC: 54B10
MSC: 54D20
MSC: 54G20
MSC: 54H11
idZBL: Zbl 0833.54012
idMR: MR1334426
.
Date available: 2009-01-08T18:16:57Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118744
.
Reference: [1] van Douwen E.K.: The integers and topology.in Handbook of Set-Theoretic Topology, K. Kunen and J. Vaughan, eds., North-Holland, Amsterdam, 1984. Zbl 0561.54004, MR 0776622
Reference: [2] van Douwen E.K., Reed G.M., Roscoe A.W., Tree I.J.: Star covering properties.Topology and Appl. 39 (1991), 71-103. Zbl 0743.54007, MR 1103993
Reference: [3] Engelking R.: General Topology.PWN-Polish Scientific Publications, Warszawa, 1977. Zbl 0684.54001, MR 0500780
Reference: [4] Fleishman W.M.: A new extension of countable compactness.Fund. Math. 67 (1970), 1-9. MR 0264608
Reference: [5] Matveev M.V.: Absolutely countably compact spaces.Topology and Appl. 58 (1994), 81-92. Zbl 0801.54021, MR 1280711
Reference: [6] Matveev M.V.: A countably compact topological group which is not absolutely countably compact.Questions and Answers in General Topology 11 (1993), 173-176. Zbl 0808.54025, MR 1234212
Reference: [7] Noble N.: The continuity of functions on Cartesian products.Trans. Amer. Math. Soc. 149 (1970), 187-198. Zbl 0229.54028, MR 0257987
Reference: [8] Nyikos P.J., Vaughan J.E.: Sequentially compact, Franklin-Rajagopalan spaces.Proc. Amer. Math. Soc. 101 (1987), 149-155. Zbl 0626.54004, MR 0897087
Reference: [9] Scarborough C.T., Stone A.H.: Products of nearly compact spaces.Trans. Amer. Math. Soc. 124 (1966), 131-147. Zbl 0151.30001, MR 0203679
Reference: [10] Vaughan J.E.: Countably compact and sequentially compact spaces.in Handbook of Set- theoretic Topology, eds. K. Kunen and J. Vaughan, North-Holland, Amsterdam, 1984. Zbl 0562.54031, MR 0776631
Reference: [11] Vaughan J.E.: Small uncountable cardinals in topology.in Problems in Topology, eds. Jan van Mill and M.G. Reed, North-Holland, Amsterdam, 1990. MR 1078647
Reference: [12] Vaughan J.E.: A countably compact, separable space which is not absolutely countably compact. Preliminary Report.Abstracts Amer. Math. Soc. 14 (November 1993), No. 888-54-37.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_36-1995-1_21.pdf 182.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo