[2] Došlá Z., Došlý O.:
On transformations of singular quadratic functionals corresponding to the equation $(py')'+qy=0$. Arch. Math. 24 (1988), 75-82.
MR 0983225
[3] Došlá Z., Zezza P.:
Singular quadratic functionals with variable end point. Comment. Math. Univ. Carolinae 33 (1992), 411-425.
MR 1209284
[4] Došlá Z., Zezza P.:
Coupled points in the calculus of variations and optimal control theory via the quadratic form theory. Diff. Equations and Dynamical Systems 2 (1994), 137-152.
MR 1386044
[5] Hestenes M.G.:
Applications of the theory of quadratic forms in Hilbert space to the calculus of variations. Pacific J. Math 1 (1951), 525-581.
MR 0046590 |
Zbl 0045.20806
[6] Leighton W., Morse M.:
Singular quadratic functionals. Trans. Amer. Math. Soc. 40 (1936), 252-286.
MR 1501873 |
Zbl 0015.02701
[7] Leighton W.:
Principal quadratic functionals. Trans. Amer. Math. Soc. 67 (1949), 253-274.
MR 0034535 |
Zbl 0041.22404
[8] Leighton W., Martin A.D.:
Quadratic functionals with a singular end point. Trans. Amer. Math. Soc. 78 (1955), 98-128.
MR 0066570 |
Zbl 0064.35401
[10] Stein J.:
Hilbert space and variational methods for singular selfadjoint systems of differential equations. Bull. Amer. Math. Soc. 80 (1974), 744-747.
MR 0417486 |
Zbl 0289.34039
[11] Tomastik E.C.:
Singular quadratic functionals of $n$ dependent variables. Trans. Amer. Math. Soc. 124 (1966), 60-76.
MR 0196556 |
Zbl 0161.09503
[12] Tomastik E.C.:
Principal quadratic functionals. Trans. Amer. Math. Soc. 218 (1976), 297-309.
MR 0405208 |
Zbl 0346.49013
[13] Zeidan V., Zezza P.:
Coupled points in the calculus of variations and applications to periodic problems. Trans. Amer. Math. Soc. 315 (1989), 323-335.
MR 0961599 |
Zbl 0677.49020
[14] Zeidan V., Zezza P.:
Variable end points in the calculus of variations: Coupled points. in ``Analysis and Optimization of Systems'', A. Bensoussan, J.L. Lions eds., Lectures Notes in Control and Information Sci. 111, Springer Verlag, Heidelberg, 1988.
MR 0956284
[15] Zezza P.:
The Jacobi condition for elliptic forms in Hilbert spaces. JOTA 76 (1993), 357-380.
MR 1203907