Previous |  Up |  Next

Article

Title: Remarks on bounded sets in $(LF)_{tv}$-spaces (English)
Author: Kąkol, Jerzy
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 36
Issue: 2
Year: 1995
Pages: 239-244
.
Category: math
.
Summary: We establish the relationship between regularity of a Hausdorff $(LB)_{tv}$-space and its properties like (K), M.c.c., sequential completeness, local completeness. We give a sufficient and necessary condition for a Hausdorff $(LB)_{tv}$-space to be an $(LS)_{tv}$-space. A factorization theorem for $(LN)_{tv}$-spaces with property (K) is also obtained. (English)
Keyword: topological vector space
Keyword: inductive limits
MSC: 46A12
MSC: 46A13
MSC: 46A16
idZBL: Zbl 0830.46003
idMR: MR1357524
.
Date available: 2009-01-08T18:17:30Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118751
.
Reference: [1] Adasch N., Ernst B., Keim D.: Topological Vector Spaces.Springer Verlag, Berlin, 1978. Zbl 0397.46005, MR 0487376
Reference: [2] Burzyk I., Kliś C., Lipecki Z.: On metrizable abelian groups with completeness-type property.Colloq. Math. 49 (1984), 33-39. MR 0774847
Reference: [3] Perez-Carreras P., Bonet I.: Barrelled locally convex spaces.Math. Studies 131, NorthHolland, 1987. Zbl 0614.46001
Reference: [4] Dierolf S.: Personal communication..
Reference: [5] Fernandez C.: Regularity conditions on $(LF)$-spaces.Arch Math. 54 (1990), 380-383. Zbl 0669.46003, MR 1042132
Reference: [6] Floret K.: Lokalkonvexe Sequenzen mit kompakten Abbildungen.I. reine angew. Math. 247 (1972), 155-195. MR 0287271
Reference: [7] Floret K.: Folgeretraktive Sequenzen Lokalkonvexen Räume.I. reine angew. Math. 259 (1973), 65-85. MR 0313748
Reference: [8] Floret K.: On bounded sets in inductive limits of normed spaces.Proc. Amer. Math. Soc. 75 (1979), 221-225. Zbl 0425.46055, MR 0532140
Reference: [9] Gilsdorf T.E.: Regular inductive limits of $K$-spaces.Collectanea Math. 42 (1) (1991-92), 45-49. MR 1181061
Reference: [10] Grothendieck A.: Produits tensoriels topologiques et espaces nucléaires.Mem. Amer. Math. Soc. 16 (1955). Zbl 0123.30301, MR 0075539
Reference: [11] Iyahen S.O.: On certain classes of linear topological spaces.Proc. London Math. Soc. 18 (3) (1968), 285-307. Zbl 0165.14203, MR 0226358
Reference: [12] Kąkol J.: Remarks on regular $(LF)$-spaces.Rend. Circ. Mat. di Palermo 42 (1993), 453-458. Zbl 0813.46005, MR 1283356
Reference: [13] Kąkol J.: On inductive limits of topological algebras.Colloq. Math. 47 (1982), 71-78. MR 0679386
Reference: [14] Labuda I., Lipecki Z.: On subseries convergent series and $m$-quasi-bases in topological linear spaces.Manuscripta Math. 38 (1982), 87-98. Zbl 0496.46006, MR 0662771
Reference: [15] Neus H.: Über die Regularitätsbegriffe induktiver lokalkonvexer Sequenzen.Manuscripta Math. 25 (1978), 135-145. Zbl 0389.46058, MR 0482036
Reference: [16] Pfister H.: Bemerkungen zum Satz über die Separabilität der Fréchet-Montel-Räume.Arch. Math. 27 (1976), 86-92. Zbl 0318.46005, MR 0417729
Reference: [17] Wagner R.: Topological lineare induktive Limiten mit abzählbaren kompakten Spektrum.I. reine angew. Math. 261 (1973), 209-215. MR 0330996
Reference: [18] Makarov B.M.: Über einige pathologische Eigenschaften induktiver Limiten von $B$-Räumen (in Russian).Uspehi Mat. Nauk 18 (1963), 171-178.
Reference: [19] Vogt D.: Regularity properties of $(LF)$-spaces.Progress in Functional Analysis (Peniscala 1990), 57-84, North-Holland, Math. Studies 170, North-Holland, Amsterdam, 1992. Zbl 0779.46005, MR 1150738
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_36-1995-2_3.pdf 196.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo