Previous |  Up |  Next

Article

Title: An invariance principle in $L^2[0,1]$ for non stationary $\varphi$-mixing sequences (English)
Author: Oliveira, Paulo Eduardo
Author: Suquet, Charles
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 36
Issue: 2
Year: 1995
Pages: 293-302
.
Category: math
.
Summary: Invariance principle in $L^2(0,1)$ is studied using signed random measures. This approach to the problem uses an explicit isometry between $L^2(0,1)$ and a reproducing kernel Hilbert space giving a very convenient setting for the study of compactness and convergence of the sequence of Donsker functions. As an application, we prove a $L^2(0,1)$ version of the invariance principle in the case of $\varphi$-mixing random variables. Our result is not available in the $D(0,1)$-setting. (English)
Keyword: reproducing kernel Hilbert space
Keyword: random measure
Keyword: invariance principle
Keyword: $\varphi$-mixing
MSC: 60F17
MSC: 60G57
idZBL: Zbl 0836.60031
idMR: MR1357531
.
Date available: 2009-01-08T18:18:03Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118758
.
Reference: [1] Billingsley P.: Convergence of probability measures.Wiley, 1968. Zbl 0944.60003, MR 0233396
Reference: [2] Berlinet A.: Espaces autoreproduisants et mesure empirique, méthodes splines en estimation fonctionnelle.Thèse 3$^{eme}$ cycle, Lille, 1980.
Reference: [3] Davydov Y.: Convergence of distributions generated by stationary stochastic processes.Theory Probab. Appl. 13 (1968), 691-696. Zbl 0181.44101
Reference: [4] Guilbart C.: Étude des produits scalaires sur l'espace des mesures. Estimation par projection. Tests à noyaux.Thèse d'Etat, Lille, 1978.
Reference: [5] Herrndorf N.: The invariance principle for $\varphi$-mixing sequences.Z. Wahrsch. verw. Gebiete 63 (1983), 97-108. MR 0699789
Reference: [6] Ibragimov I.A.: Some limit theorems for stationary processes.Theory Probability Appl. 7 (1962), 349-382. Zbl 0119.14204, MR 0148125
Reference: [7] Jacob P.: Private communication..
Reference: [8] Oliveira P.E.: Invariance principles in $L^2(0,1)$.Comment. Math. Univ. Carolinae 31:2 (1990), 357-366. MR 1077906
Reference: [9] Parthasarathy K.R.: Probability Measures on Metric Spaces.Academic Press, 1967. MR 0226684
Reference: [10] Peligrad M.: An invariance principle for $\varphi$-mixing sequences.Ann. Probab. 13 (1985), 1304-1313. MR 0806227
Reference: [11] Philipp W.: Invariance principles for independent and weakly dependent random variables.Dependence in probability and statistics (Oberwolfach, 1985), 225-268, Progr. Probab. Statist., 11, Birkhauser Boston, Boston, MA, 1986. Zbl 0614.60027, MR 0899992
Reference: [12] Samur J.D.: On the invariance principle for stationary $\varphi$-mixing triangular arrays with infinitely divisible limits.Probab. Th. Rel. Fields 75 (1987), 245-259. MR 0885465
Reference: [13] Suquet Ch.: Une topologie pré-hilbertienne sur l'espace des mesures à signe bornées.Pub. Inst. Stat. Univ. Paris XXXV (1990), 51-77. MR 1745002
Reference: [14] Suquet Ch.: Relecture des critères de relative compacité d'une famille de probabilités sur un espace de Hilbert.Pub. IRMA 28 (1992), III, Lille.
Reference: [15] Suquet Ch.: Convergences stochastiques de suites de mesures aléatoires à signe considérées comme variables aléatoires hilbertiennes.Pub. Inst. Stat. Univ. Paris XXXVII 1-2 (1993), 71-99. MR 1743969
Reference: [16] Utev S.A.: On the central limit theorem for $\varphi$-mixing arrays of random variables.Theory Probab. Appl. 35:1 (1990), 131-139. MR 1050059
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_36-1995-2_10.pdf 226.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo