Title:
|
An invariance principle in $L^2[0,1]$ for non stationary $\varphi$-mixing sequences (English) |
Author:
|
Oliveira, Paulo Eduardo |
Author:
|
Suquet, Charles |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
36 |
Issue:
|
2 |
Year:
|
1995 |
Pages:
|
293-302 |
. |
Category:
|
math |
. |
Summary:
|
Invariance principle in $L^2(0,1)$ is studied using signed random measures. This approach to the problem uses an explicit isometry between $L^2(0,1)$ and a reproducing kernel Hilbert space giving a very convenient setting for the study of compactness and convergence of the sequence of Donsker functions. As an application, we prove a $L^2(0,1)$ version of the invariance principle in the case of $\varphi$-mixing random variables. Our result is not available in the $D(0,1)$-setting. (English) |
Keyword:
|
reproducing kernel Hilbert space |
Keyword:
|
random measure |
Keyword:
|
invariance principle |
Keyword:
|
$\varphi$-mixing |
MSC:
|
60F17 |
MSC:
|
60G57 |
idZBL:
|
Zbl 0836.60031 |
idMR:
|
MR1357531 |
. |
Date available:
|
2009-01-08T18:18:03Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118758 |
. |
Reference:
|
[1] Billingsley P.: Convergence of probability measures.Wiley, 1968. Zbl 0944.60003, MR 0233396 |
Reference:
|
[2] Berlinet A.: Espaces autoreproduisants et mesure empirique, méthodes splines en estimation fonctionnelle.Thèse 3$^{eme}$ cycle, Lille, 1980. |
Reference:
|
[3] Davydov Y.: Convergence of distributions generated by stationary stochastic processes.Theory Probab. Appl. 13 (1968), 691-696. Zbl 0181.44101 |
Reference:
|
[4] Guilbart C.: Étude des produits scalaires sur l'espace des mesures. Estimation par projection. Tests à noyaux.Thèse d'Etat, Lille, 1978. |
Reference:
|
[5] Herrndorf N.: The invariance principle for $\varphi$-mixing sequences.Z. Wahrsch. verw. Gebiete 63 (1983), 97-108. MR 0699789 |
Reference:
|
[6] Ibragimov I.A.: Some limit theorems for stationary processes.Theory Probability Appl. 7 (1962), 349-382. Zbl 0119.14204, MR 0148125 |
Reference:
|
[7] Jacob P.: Private communication.. |
Reference:
|
[8] Oliveira P.E.: Invariance principles in $L^2(0,1)$.Comment. Math. Univ. Carolinae 31:2 (1990), 357-366. MR 1077906 |
Reference:
|
[9] Parthasarathy K.R.: Probability Measures on Metric Spaces.Academic Press, 1967. MR 0226684 |
Reference:
|
[10] Peligrad M.: An invariance principle for $\varphi$-mixing sequences.Ann. Probab. 13 (1985), 1304-1313. MR 0806227 |
Reference:
|
[11] Philipp W.: Invariance principles for independent and weakly dependent random variables.Dependence in probability and statistics (Oberwolfach, 1985), 225-268, Progr. Probab. Statist., 11, Birkhauser Boston, Boston, MA, 1986. Zbl 0614.60027, MR 0899992 |
Reference:
|
[12] Samur J.D.: On the invariance principle for stationary $\varphi$-mixing triangular arrays with infinitely divisible limits.Probab. Th. Rel. Fields 75 (1987), 245-259. MR 0885465 |
Reference:
|
[13] Suquet Ch.: Une topologie pré-hilbertienne sur l'espace des mesures à signe bornées.Pub. Inst. Stat. Univ. Paris XXXV (1990), 51-77. MR 1745002 |
Reference:
|
[14] Suquet Ch.: Relecture des critères de relative compacité d'une famille de probabilités sur un espace de Hilbert.Pub. IRMA 28 (1992), III, Lille. |
Reference:
|
[15] Suquet Ch.: Convergences stochastiques de suites de mesures aléatoires à signe considérées comme variables aléatoires hilbertiennes.Pub. Inst. Stat. Univ. Paris XXXVII 1-2 (1993), 71-99. MR 1743969 |
Reference:
|
[16] Utev S.A.: On the central limit theorem for $\varphi$-mixing arrays of random variables.Theory Probab. Appl. 35:1 (1990), 131-139. MR 1050059 |
. |