Previous |  Up |  Next

Article

Title: Strong subdifferentiability of norms and geometry of Banach spaces (English)
Author: Godefroy, G.
Author: Montesinos, V.
Author: Zizler, V.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 36
Issue: 3
Year: 1995
Pages: 493-502
.
Category: math
.
Summary: The strong subdifferentiability of norms (i.e\. one-sided differentiability uniform in directions) is studied in connection with some structural properties of Banach spaces. It is shown that every separable Banach space with nonseparable dual admits a norm that is nowhere strongly subdifferentiable except at the origin. On the other hand, every Banach space with a strongly subdifferentiable norm is Asplund. (English)
Keyword: strong subdifferentiability of norms
Keyword: Asplund spaces
Keyword: renormings
Keyword: weak compact generating
MSC: 46B03
MSC: 46B20
MSC: 46B26
idZBL: Zbl 0844.46006
idMR: MR1364490
.
Date available: 2009-01-08T18:19:38Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118778
.
Reference: [1] Contreras M.D., Payá R.: On upper semicontinuity of duality mapping.Proc. Amer. Math. Soc. 121 (1994), 451-459. MR 1215199
Reference: [2] Deville R., Godefroy G., Zizler V.: Smoothness and renormings in Banach spaces.Pitman Monographs and Surveys in Pure and Applied Mathematics 64 (1993). Zbl 0782.46019, MR 1211634
Reference: [3] Deville R., Godefroy G., Hare D., Zizler V.: Differentiability of convex functions and the convex point of continuity property in Banach spaces.Israel J. Math. 59 (1987), 245-255. Zbl 0654.46021, MR 0920087
Reference: [4] Franchetti C.: Lipschitz maps and the geometry of the unit ball in normed spaces.Archiv. Math. 46 (1986), 76-84. Zbl 0564.46014, MR 0829819
Reference: [5] Franchetti C., Payá R.: Banach spaces with strongly subdifferentiable norm.Boll. Uni. Mat. Ital. VII-B (1993), 45-70. MR 1216708
Reference: [6] Godefroy G.: Some applications of Simons' inequality.Seminar of Functional Analysis II, Univ. of Murcia, to appear. MR 1767034
Reference: [7] Godefroy G., Kalton N.J.: The ball topology and its applications.Contemporary Math. 85 (1989), 195-238. Zbl 0676.46003, MR 0983386
Reference: [8] Gregory D.A.: Upper semicontinuity of subdifferential mappings.Canad. Math. Bull. 23 (1980), 11-19. MR 0573553
Reference: [9] Haydon R.: Trees in renorming theory.to appear. Zbl 1036.46003, MR 1674838
Reference: [10] James R.C.: Weakly compact sets.Trans. Amer. Math. Soc. 113 (1964), 129-140. Zbl 0129.07901, MR 0165344
Reference: [11] Jayne J.E., Rogers C.A.: Borel selectors for upper semicontinuous set valued mappings.Acta Math. 155 (1985), 41-79. MR 0793237
Reference: [12] John K., Zizler V.: Smoothness and its equivalents in weakly compactly generated Banach spaces.J. Funct. Anal. 15 (1974), 161-166. Zbl 0272.46012, MR 0417759
Reference: [13] John K., Zizler V.: Projections in dual weakly compactly generated Banach spaces.Studia Math. 49 (1973), 41-50. Zbl 0247.46029, MR 0336295
Reference: [14] Lindenstrauss J., Tzafriri L.: Classical Banach spaces I.Sequence Spaces Springer-Verlag (1977). Zbl 0362.46013, MR 0500056
Reference: [15] Odell E., Rosenthal H.P.: A double dual characterization of separable Banach spaces containing $\ell_1$.Israel J. Math. 20 (1975), 375-384. Zbl 0312.46031, MR 0377482
Reference: [16] Simons S.: A convergence theorem with boundary.Pacific J. Math. 40 (1972), 703-708. Zbl 0237.46012, MR 0312193
Reference: [17] Singer I.: Bases in Banach Spaces II.Springer-Verlag (1981). Zbl 0467.46020, MR 0610799
Reference: [18] Stegall C.: The Radon-Nikodym property in conjugate Banach spaces.Trans. Amer. Math. Soc. 206 (1975), 213-223. Zbl 0318.46056, MR 0374381
Reference: [19] Troyanski S.L.: On a property of the norm which is close to local uniform convexity.Math. Ann. 27 (1985), 305-313. MR 0783556
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_36-1995-3_11.pdf 238.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo