Previous |  Up |  Next

Article

Title: Which topological spaces have a weak reflection in compact spaces? (English)
Author: Kovár, Martin Maria
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 36
Issue: 3
Year: 1995
Pages: 529-536
.
Category: math
.
Summary: The problem, whether every topological space has a weak compact reflection, was answered by M. Hu\v sek in the negative. Assuming normality, M. Hu\v sek fully characterized the spaces having a weak reflection in compact spaces as the spaces with the finite Wallman remainder. In this paper we prove that the assumption of normality may be omitted. On the other hand, we show that some covering properties kill the weak reflectivity of a noncompact topological space in compact spaces. (English)
Keyword: weak reflection
Keyword: Wallman compactification
Keyword: filter (base)
Keyword: net
Keyword: $\theta$-regul\-arity, weak $\left[\omega_1, \infty\right)^r$-refinability
MSC: 54C20
MSC: 54D20
MSC: 54D35
idZBL: Zbl 0860.54024
idMR: MR1364494
.
Date available: 2009-01-08T18:19:57Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118782
.
Reference: [1] Adámek J., Rosický J.: On injectivity in locally presentable categories.preprint, 1991 {published}: Trans. Amer. Math. Soc. 336,2 (1993), 785-804. MR 1085935
Reference: [2] Burke D.K.: Covering properties.Handbook of Set-theoretic Topology K. Kunen and J.E. Vaughan North-Holland Amsterdam (1984), 347-421. Zbl 0569.54022, MR 0776628
Reference: [3] Császár A.: General Topology.Akademiai Kiadó Budapest (1978).
Reference: [4] Hušek M.: Čech-Stone-like compactifications for general topological spaces.Comment. Math. Univ. Carolinae 33,1 (1992), 159-163. MR 1173757
Reference: [5] Janković D.S.: $\theta$-regular spaces.preprint {published}: Internat. J. Math. Sci. 8 (1985), no.3, 615-619. MR 0809083
Reference: [6] Kovár M.M.: On $\theta$-regular spaces.Internat. J. Math. Sci. 17 (1994), no. 4, 687-692. MR 1298791
Reference: [7] Kovár M.M.: Product spaces, paracompactness and Boyte's covering property.preprint, 1994.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_36-1995-3_15.pdf 217.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo