Title:
|
Differential equations at resonance (English) |
Author:
|
O'Regan, Donal |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
36 |
Issue:
|
4 |
Year:
|
1995 |
Pages:
|
673-694 |
. |
Category:
|
math |
. |
Summary:
|
New existence results are presented for the two point singular ``resonant'' boundary value problem $\frac{1}{p}(py')'+r y+\lambda_m qy=f(t,y,py')$ a.e\. on $[0,1]$ with $y$ satisfying Sturm Liouville or Periodic boundary conditions. Here $\lambda_m$ is the $(m+1)^{st}$ eigenvalue of $\frac{1}{pq} [(pu')' +rpu] +\lambda u=0$ a.e\. on $[0,1]$ with $u$ satisfying Sturm Liouville or Periodic boundary data. (English) |
Keyword:
|
boundary value problems |
Keyword:
|
resonance |
Keyword:
|
existence |
MSC:
|
34B15 |
MSC:
|
34B24 |
idZBL:
|
Zbl 0843.34029 |
idMR:
|
MR1378689 |
. |
Date available:
|
2009-01-08T18:20:54Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118795 |
. |
Reference:
|
[1] Atkinson F.V.: Discrete and continuous boundary problems.Academic Press, New York, 1964. Zbl 0169.10601, MR 0176141 |
Reference:
|
[2] Atkinson F.V., Everitt W.N., Zettl A.: Regularization of a Sturm Liouville problem with an interior singularity.Diff. Int. Eq. 1 (1988), 213-221. Zbl 0715.34043, MR 0922562 |
Reference:
|
[3] Bobisud L.E., O'Regan D.: Positive solutions for a class of nonlinear singular boundary value problems at resonance.Jour. Math. Anal. Appl. 184 (1994), 263-284. Zbl 0805.34019, MR 1278388 |
Reference:
|
[4] Cesari L., Kannan R.: Existence of solutions of a nonlinear differential equation.Proc. Amer. Math. Soc. 88 (1983), 605-613. Zbl 0529.34005, MR 0702284 |
Reference:
|
[5] Fonda A., Mawhin J.: Quadratic forms, weighted eigenfunctions and boundary value problems for nonlinear second order ordinary differential equations.Proc. Royal Soc. Edinburgh 112A (1989), 145-153. Zbl 0677.34022, MR 1007541 |
Reference:
|
[6] Iannacci R., Nkashama M.N.: Unbounded perturbations of forced second order ordinary differential equations at resonance.Jour. Diff. Eq. 69 (1987), 289-309. Zbl 0627.34008, MR 0903389 |
Reference:
|
[7] Iannacci R., Nkashama M.N.: Nonlinear two point boundary value problems at resonance without Landesman- Lazer conditions.Proc. Amer. Math. Soc. 106 (1989), 943-952. MR 1004633 |
Reference:
|
[8] Mawhin J., Ward J.R.: Periodic solutions of some forced Lienard differential equations at resonance.Archiv der Math. 41 (1983), 337-351. Zbl 0537.34037, MR 0731606 |
Reference:
|
[9] Mawhin J., Ward J.R., Willem M.: Necessary and sufficient conditions for the solvability of a nonlinear two point boundary value problem.Proc. Amer. Math. Soc. 93 (1985), 667-674. Zbl 0559.34014, MR 0776200 |
Reference:
|
[10] Mawhin J., Willem M.: Critical point theory and Hamiltonian systems.Springer Verlag, New York, 1989. Zbl 0676.58017, MR 0982267 |
Reference:
|
[11] Mawhin J., Omano W.: Two point boundary value problems for nonlinear perturbations of some singular linear differential equations at resonance.Comment. Math. Univ. Carolinae 30 (1989), 537-550. MR 1031871 |
Reference:
|
[12] Naimark M.A.: Linear differential operators Part II.Ungar Publ. Co., London, 1968. Zbl 0227.34020, MR 0262880 |
Reference:
|
[13] Nkashama M.N., Santanilla J.: Existence of multiple solutions of some nonlinear boundary value problems.Jour. Diff. Eq. 84 (1990), 148-164. MR 1042663 |
Reference:
|
[14] O'Regan D.: Singular Sturm Liouville problems and existence of solutions to singular nonlinear boundary value problems.Nonlinear Anal. 20 (1993), 767-779. Zbl 0780.34017 |
Reference:
|
[15] O'Regan D.: Solvability of some two point boundary value problems of Dirichlet, Neumann or Periodic type.Dynamic Systems and Appl. 2 (1993), 163-182. Zbl 0785.34025, MR 1226995 |
Reference:
|
[16] O'Regan D.: Existence principles for second order nonresonant boundary value problems.Jour. Appl. Math. Stoch. Anal. 7 (1994), 487-507. Zbl 0819.34019, MR 1310923 |
Reference:
|
[17] O'Regan D.: Carathéodory theory of nonresonant second order boundary value problems.to appear. Zbl 0870.34028 |
Reference:
|
[18] Ramas M., Sanchez L.: Variational elliptic problems involving noncoercive functionals.Proc. Roy. Soc. Edinburgh 112A (1989), 177-185. MR 1007543 |
Reference:
|
[19] Sanchez L.: Positive solutions for a class of semilinear two point boundary value problems.Bull. Aust. Math. Soc. 45 (1992), 439-451. Zbl 0745.34017, MR 1165150 |
. |