Previous |  Up |  Next

Article

Title: Characterizing realcompact spaces as limits of approximate polyhedral systems (English)
Author: Matijević, Vlasta
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 36
Issue: 4
Year: 1995
Pages: 783-793
.
Category: math
.
Summary: Realcompact spaces can be characterized as limits of approximate inverse systems of Polish polyhedra. (English)
Keyword: approximate inverse system
Keyword: approximate inverse limit
Keyword: approximate resolution $\operatorname{mod}\, \Cal P$
Keyword: realcompact space
Keyword: Lindelöf space
Keyword: Polish space
Keyword: non-measurable cardinal
MSC: 54B25
MSC: 54B35
MSC: 54C56
MSC: 54D30
MSC: 54D60
idZBL: Zbl 0893.54021
idMR: MR1378699
.
Date available: 2009-01-08T18:21:41Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118805
.
Reference: [1] Čerin Z.: Recognizing approximate $(\Cal A,\Cal B,\Cal C)$-tameness.Acta Math. Univ. Comenianae 62:2 (1993), 207-219. Zbl 0846.54010, MR 1270508
Reference: [2] Engelking R.: General Topology.Monografie Matematyczne 60, Polish Scientific Publishers, Warszawa, 1977. Zbl 0684.54001, MR 0500780
Reference: [3] Fedorchuk V.V., Chigogidze A.Ch.: Absolute Retracts and Infinite Dimensional Manifolds (Russian).Nauka, Moscow, 1992. MR 1202238
Reference: [4] Gillman L., Jerison M.: Rings of Continuous Functions.D. van Nostrand Co., Princeton, 1960. Zbl 0327.46040, MR 0116199
Reference: [5] Sze-Tsen Hu: Theory of Retracts.Wayne State University Press, Detroit, 1965. Zbl 0029.32203, MR 0181977
Reference: [6] Mardešić S.: Strong shape of the Stone-Čech compactification.Comment. Math. Univ. Carolinae 33:3 (1992), 533-539. MR 1209294
Reference: [7] Mardešić S., Matijević V.: $\Cal P$-like spaces are limits of approximate $\Cal P$-resolution.Topology Appl. 45 (1992), 189-202. MR 1180809
Reference: [8] Mardešić S., Rubin L.R.: Approximate inverse systems of compacta and covering dimension.Pacific J. Math. 138 (1989), 129-144. MR 0992178
Reference: [9] Mardešić S., Segal J.: Shape Theory.North-Holland Publ. Co., Amsterdam, 1982. MR 0676973
Reference: [10] Mardešić S., Uglešić N.: On irreducible mappings into polyhedra.Topology Appl. 61 (1995), 187-203. MR 1314618
Reference: [11] Mardešić S., Watanabe T.: Approximate resolutions of spaces and mappings.Glasnik Mat. 24 (1989), 587-637. MR 1080085
Reference: [12] Matijević V.: Spaces having approximate resolutions consisting of finite-dimensional polyhedra.Publ. Math. Debrecen, to appear. MR 1336370
Reference: [13] Mrowka S.: An elementary proof of Katětov's theorem concerning $Q$-spaces.Michigan Math. J. 11 (1964), 61-63. Zbl 0117.16002, MR 0161308
Reference: [14] Nagata J.: Modern General Topology.North-Holland Publ. Co., Amsterdam, 1968. Zbl 0598.54001, MR 0264579
Reference: [15] Pasynkov B.A.: On the spectral decomposition of topological spaces (Russian).Mat. Sb. 66 (1965), 35-79. MR 0172236
Reference: [16] Shirota T.: A class of topological spaces.Osaka Math. J. 4 (1952), 23-40. Zbl 0047.41704, MR 0050872
Reference: [17] Spanier E.H.: Algebraic Topology.McGraw-Hill, New York, 1966. Zbl 0810.55001, MR 0210112
Reference: [18] Watanabe T.: Approximate resolutions and covering dimension.Topology Appl. 38 (1991), 147-154. Zbl 0716.54021, MR 1094547
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_36-1995-4_16.pdf 231.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo