Title:
|
On nodal radial solutions of an elliptic problem involving critical Sobolev exponent (English) |
Author:
|
Chabrowski, J. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
37 |
Issue:
|
1 |
Year:
|
1996 |
Pages:
|
1-16 |
. |
Category:
|
math |
. |
Summary:
|
In this paper we construct radial solutions of equation (1) (and (13)) having prescribed number of nodes. (English) |
Keyword:
|
elliptic equations |
Keyword:
|
radial solutions |
Keyword:
|
critical Sobolev exponent |
MSC:
|
35B05 |
MSC:
|
35J20 |
MSC:
|
35J60 |
idZBL:
|
Zbl 0853.35033 |
idMR:
|
MR1396158 |
. |
Date available:
|
2009-01-08T18:21:56Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118810 |
. |
Reference:
|
[1] Adimurthi: Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the $n$-Laplacian.Ann. Scuola Norm. Sup. Pisa 12.1 (1990), 393-413. Zbl 0732.35028, MR 1079983 |
Reference:
|
[2] Ambrosetti A., Rabinowitz P.H.: Dual variational methods in critical point theory and applications.J. Funct. Anal. 14 (1973), 349-381. Zbl 0273.49063, MR 0370183 |
Reference:
|
[3] Bartsch Th., Willem M.: Infinitely many radial solutions of a semilinear elliptic problem on $\Bbb R^N$.Arch. Rat. Mech. Anal. 124 (1993), 261-274. MR 1237913 |
Reference:
|
[4] Bianchi G., Chabrowski J., Szulkin A.: On symmetric solutions of an elliptic equation involving critical Sobolev exponent.Nonlinear Analysis, TMA 25(1) (1995), 41-59. MR 1331987 |
Reference:
|
[5] Ladyzhenskaya O.A., Ural'ceva O.A.: Linear and Quasilinear Elliptic Equations.Academic Press New York (1968). MR 0244627 |
Reference:
|
[6] Lions P.L.: Symétrie et compacité dans les espaces de Sobolev.J. Funct. Anal. 49 (1982), 315-334. Zbl 0501.46032, MR 0683027 |
Reference:
|
[7] Yi Li, Wei-Ming Ni: On the asymptotic behavior and radial symmetry of positive solutions of semilinear elliptic equations in $\Bbb R^n$, I Asymptotic behavior, II Radial symmetry.Arch. Rat. Mech. Anal. 118 (1992), 195-222, 223-243. MR 1158935 |
Reference:
|
[8] Rother W.: Some existence results for the equation $\Delta U+K(x)U^p=0$.Commun. in P.D.E. 15.10 (1990), 1461-1473. MR 1077474 |
Reference:
|
[9] Stuart C.A.: Bifurcation in $L^p(\Bbb R^N)$ for a semilinear elliptic equations.Proc. London Math. Soc. 57(3) (1988), 511-541. Zbl 0673.35005, MR 0960098 |
Reference:
|
[10] Talenti G.: Best constants in Sobolev inequality.Ann. Mat. Pura Appl. 110 (1976), 353-372. MR 0463908 |
Reference:
|
[11] Vainberg M.M.: Variational Method and Method of Monotone Operators in the Theory of Nonlinear Equations.John Wiley & Sons New York-Toronto (1973). Zbl 0279.47022, MR 0467428 |
. |