Previous |  Up |  Next

Article

Title: Forcing countable networks for spaces satisfying $\operatorname{R}(X^\omega)=\omega$ (English)
Author: Juhász, I.
Author: Soukup, L.
Author: Szentmiklóssy, Z.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 37
Issue: 1
Year: 1996
Pages: 159-170
.
Category: math
.
Summary: We show that all finite powers of a Hausdorff space $X$ do not contain uncountable weakly separated subspaces iff there is a c.c.c poset $P$ such that in $V^P$ $\,X$ is a countable union of $0$-dimensional subspaces of countable weight. We also show that this theorem is sharp in two different senses: (i) we cannot get rid of using generic extensions, (ii) we have to consider all finite powers of $X$. (English)
Keyword: net weight
Keyword: weakly separated
Keyword: Martin's Axiom
Keyword: forcing
MSC: 03E35
MSC: 54A25
MSC: 54A35
idZBL: Zbl 0862.54003
idMR: MR1396168
.
Date available: 2009-01-08T18:22:43Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118820
.
Reference: [1] Ciesielski K.: On the netweigth of subspaces.Fund. Math. 117 (1983), 1 37-46. MR 0712211
Reference: [2] Hajnal A., Juhász I.: Weakly separated subspaces and networks.Logic '78, Studies in Logic, 97, 235-245. MR 0567672
Reference: [3] Jech T.: Set Theory.Academic Press, New York, 1978. Zbl 1007.03002, MR 0506523
Reference: [4] Juhász I.: Cardinal Functions - Ten Years Later.Math. Center Tracts 123, Amsterdam, 1980. MR 0576927
Reference: [5] Juhász I., Soukup L., Szentmiklóssy Z.: What makes a space have large weight?.Topology and its Applications 57 (1994), 271-285. MR 1278028
Reference: [6] Shelah S.: private communication..
Reference: [7] Tkačenko M.G.: Chains and cardinals.Dokl. Akad. Nauk. SSSR 239 (1978), 3 546-549. MR 0500798
Reference: [8] Todorčevič S.: Partition Problems in Topology.Contemporary Mathematics, vol. 84, Providence, 1989. MR 0980949
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_37-1996-1_11.pdf 257.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo