Title:
|
Vector-valued sequence space $BMC(X)$ and its properties (English) |
Author:
|
Bu, Qing-Ying |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
37 |
Issue:
|
2 |
Year:
|
1996 |
Pages:
|
207-216 |
. |
Category:
|
math |
. |
Summary:
|
In this paper, a vector topology is introduced in the vector-valued sequence space $\text{\it BMC}\,(X)$ and convergence of sequences and sequentially compact sets in $\text{\it BMC}\,(X)$ are characterized. (English) |
Keyword:
|
vector-valued sequence space |
Keyword:
|
topology |
Keyword:
|
series |
Keyword:
|
compact sets |
MSC:
|
40A05 |
MSC:
|
46A05 |
MSC:
|
46A45 |
MSC:
|
46E40 |
idZBL:
|
Zbl 0852.46006 |
idMR:
|
MR1398996 |
. |
Date available:
|
2009-01-08T18:23:09Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118826 |
. |
Reference:
|
[1] Bu Q.Y.: Orlicz-Pettis type theorem for compact operators.Chinese Ann. of Math. 17A:1 (1996), 79-86. Zbl 0923.46007 |
Reference:
|
[2] Li R.L., Bu Q.Y.: Locally convex spaces containing no copy of $c_0$.J. Math. Anal. Appl. 172:1 (1993), 205-211. MR 1199505 |
Reference:
|
[3] Li R.L., Swartz C.: Spaces for which the uniform boundedness principle holds.Studia Sci. Math. Hungar. 27 (1992), 379-384. Zbl 0681.46001, MR 1218160 |
Reference:
|
[4] Pietsch A.: Nuclear Locally Convex Spaces.Springer-Verlag, Berlin, 1972. Zbl 0308.47024, MR 0350360 |
Reference:
|
[5] Wilansky A.: Modern Methods in Topological Vector Spaces.McGraw-Hill, New York, 1978. Zbl 0395.46001, MR 0518316 |
. |