Previous |  Up |  Next

Article

Title: On automorphisms of digraphs without symmetric cycles (English)
Author: Wójcik, Piotr
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 37
Issue: 3
Year: 1996
Pages: 457-467
.
Category: math
.
Summary: A digraph is a symmetric cycle if it is symmetric and its underlying graph is a cycle. It is proved that if $D$ is an asymmetric digraph not containing a symmetric cycle, then $D$ remains asymmetric after removing some vertex. It is also showed that each digraph $D$ without a symmetric cycle, whose underlying graph is connected, contains a vertex which is a common fixed point of all automorphisms of $D$. (English)
Keyword: asymmetric diagraphs
MSC: 05C20
MSC: 05C25
idZBL: Zbl 0881.05051
idMR: MR1426910
.
Date available: 2009-01-08T18:25:15Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118852
.
Reference: [1] Nešetřil J.: A congruence theorem for asymmetric trees.Pacific J. Math. 37 (1971), 771-778. MR 0307955
Reference: [2] Nešetřil J., Sabidussi G.: Minimal asymmetric graphs of induced length 4.Graphs and Combinatorics 8.4 (1992), 343-359. MR 1204119
Reference: [3] Sabidussi G.: Clumps, minimal asymmetric graphs, and involutions.J. Combin. Th. Ser. B 53.1 (1991), 40-79. Zbl 0686.05028, MR 1122296
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_37-1996-3_3.pdf 216.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo