Previous |  Up |  Next

Article

Title: Three-space-problem for some classes of linear topological spaces (English)
Author: Kadelburg, Zoran
Author: Radenović, Stojan
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 37
Issue: 3
Year: 1996
Pages: 507-514
.
Category: math
.
Summary: We examine the so-called three-space-stability for some classes of linear topological and locally convex spaces for which this problem has not been investigated. (English)
Keyword: three-space-problem
Keyword: locally topological spaces
Keyword: (HM)-spaces
Keyword: inductively semireflexive spaces
Keyword: spaces with minimal or the finest linear topology
MSC: 46A03
MSC: 46A04
MSC: 46A16
idZBL: Zbl 0881.46002
idMR: MR1426915
.
Date available: 2009-01-08T18:25:43Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118857
.
Reference: [1] Adasch N., Ernst B.: Lokaltopologische Vektorräume.Collect. Math. 25 (1974), 255-274. Zbl 0305.46006, MR 0427994
Reference: [2] Bellenot S.F.: On nonstandard hulls of convex spaces.Can. J. Math. 28 (1976), 141-147. Zbl 0308.46001, MR 0407556
Reference: [3] Berezanskiĭ Yu.A.: Induktivno refleksivnye lokal'no vypuklye prostranstva.Soviet Math. {Dokl.} 9 (1968), 1080-1082.
Reference: [4] Bonet J., Dierolf S.: On distinguished Fréchet spaces.Progress in Functional Analysis, K.D. Bierstedt, J. Bonet, J. Horváth, M. Maestre (eds.) Elsevier Publ. (1992), 201-214. Zbl 0785.46003, MR 1150747
Reference: [5] Bonet J., Dierolf S., Fernandez C.: On the three-space-problem for distinguished Fréchet spaces.Bull. Soc. Roy. Sci. Liége 59 (1990), 301-306. Zbl 0713.46001, MR 1070413
Reference: [6] Brauner K.: Duals of Fréchet spaces and a generalization of the Banach-Dieudonné theorem.Duke Math. J. 40 (1973), 845-856. Zbl 0274.46003, MR 0330988
Reference: [7] Buchwalter H.: Espaces ultrabornologiques et b-reflexivite.Publ. Dép. Mat. Lyon 8 (1971), 91-106. Zbl 0252.46010, MR 0320684
Reference: [8] Dierolf S.: A note on the lifting of linear and locally convex topologies on a quotient space.Collect. Math. 31 (1980), 193-198. Zbl 0453.46002, MR 0621724
Reference: [9] Dierolf S.: On the three-space-problem and the lifting of bounded sets.Collect. Math. 44 (1993), 81-89. Zbl 0803.46001, MR 1280727
Reference: [10] Grothendieck A.: Sur les espaces (F) et (DF).Summa Bras. Math. 3 (1954), 57-123. Zbl 0058.09803, MR 0075542
Reference: [11] Heinrich S.: Ultrapowers of locally convex spaces and applications I.Math. Nachr. 118 (1984), 285-315. Zbl 0576.46002, MR 0773627
Reference: [12] Henson C.W., Moore L.C., Jr.: The nonstandard theory of topological vector spaces.Trans. Amer. Math. Soc. 172 (1972), 405-435. MR 0308722
Reference: [13] Henson C.W., Moore L.C., Jr.: Invariance of the nonstandard hulls of locally convex spaces.Duke Math. J. 40 (1973), 193-205. Zbl 0256.46001, MR 0372568
Reference: [14] Kadelburg Z.: Ultra-b-barrelled spaces and the completeness of $\Cal L_b(E,F)$.Mat. Vesnik 3 (16) (31) (1979), 23-30. MR 0589477
Reference: [15] Kadelburg Z., Radenović S.: On ultrapowers of linear topological spaces without convexity conditions.Publ. Inst. Math. (N.S) 47(61) (1990), 71-81. MR 1103531
Reference: [16] Köthe G.: Topological Vector Spaces I, $2^{nd}$ ed..Springer Berlin-Heidelberg-New York (1983). MR 0248498
Reference: [17] Meise R., Vogt D.: Einführung in Funktionalanalysis.Vieweg Wiesbaden (1992). MR 1195130
Reference: [18] Noureddine K.: Nouvelles classes d'espaces localment convexes.Publ. Dép. Mat. Lyon 10 (1973), 105-122. MR 0367605
Reference: [19] Roelcke W., Dierolf S.: On the three-space-problem for topological vector spaces.Collect. Math. 32 (1981), 13-35. Zbl 0489.46002, MR 0643398
Reference: [20] Shaefer H.H.: Topological Vector Spaces.Springer Berlin-Heidelberg-New York (1970).
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_37-1996-3_8.pdf 209.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo