Previous |  Up |  Next

Article

Title: Oblique derivative problem for elliptic equations in non-divergence form with $VMO$ coefficients (English)
Author: di Fazio, G.
Author: Palagachev, D. K.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 37
Issue: 3
Year: 1996
Pages: 537-556
.
Category: math
.
Summary: A priori estimates and strong solvability results in Sobolev space $W^{2,p}(\Omega)$, $1<p<\infty$ are proved for the regular oblique derivative problem $$ \begin{cases} \sum_{i,j=1}^n a^{ij}(x)\frac{\partial^2u}{\partial x_i\partial x_j} =f(x) \text{ a.e. } \Omega \\ \frac{\partial u}{\partial \ell}+\sigma(x)u =\varphi(x) \text{ on } \partial \Omega \end{cases} $$ when the principal coefficients $a^{ij}$ are $V\kern -1.2pt MO\cap L^\infty$ functions. (English)
Keyword: oblique derivative
Keyword: elliptic equation
Keyword: non divergence form
Keyword: $V\kern -1.2pt MO$ coefficients
Keyword: strong solution
MSC: 35J25
idZBL: Zbl 0881.35028
idMR: MR1426919
.
Date available: 2009-01-08T18:26:00Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118861
.
Reference: [A] Acquistapace P.: On $BMO$ regularity for linear elliptic systems.Ann. Mat. Pura Appl. 161 (1992), 231-270. Zbl 0802.35015, MR 1174819
Reference: [ADN] Agmon S., Douglis A., Nirenberg L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I.Comm. Pure Appl. Math. 12 (1959), 623-727. Zbl 0093.10401, MR 0125307
Reference: [AR] Adams R.: Sobolev Spaces.Academic Press, New York, 1975. Zbl 1098.46001, MR 0450957
Reference: [B] Bramanti M.: Commutators of integral operators with positive kernels.Le Matematiche XLIX (1994), 149-168. Zbl 0840.42009, MR 1386370
Reference: [C1] Chicco M.: Third boundary value problem in $H^{2,p}(Ømega)$ for a class of linear second order elliptic partial differential equations.Rend. Ist. Mat. Univ. Trieste 4 (1972), 85-94. MR 0348258
Reference: [C2] Chicco M.: Terzo problema al contorno per una classe di equazioni ellittiche del secondo ordine a coefficienti discontinui.Ann. Mat. Pura Appl. (4) 112 (1977), 241-259; errata, ibid. (4) 130 (1982), 399-401. MR 0435582
Reference: [CFL1] Chiarenza F., Frasca M., Longo P.: Interior $W^{2,p}$ estimates for non divergence elliptic equations with discontinuous coefficients.Ricerche di Mat. 60 (1991), 149-168. MR 1191890
Reference: [CFL2] Chiarenza F., Frasca M., Longo P.: $W^{2,p}$-solvability of the Dirichlet problem for non divergence elliptic equations with $V MO$ coefficients.Trans. Amer. Math. Soc. 336 (1993), 841-853. Zbl 0818.35023, MR 1088476
Reference: [GT] Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order.2nd ed., Springer-Verlag, Berlin, 1983. Zbl 1042.35002, MR 0737190
Reference: [JN] John F., Nirenberg L.: On functions of bounded mean oscillation.Comm. Pure Appl. Math. 14 (1961), 415-426. Zbl 0102.04302, MR 0131498
Reference: [L] Luo Y.: An Aleksandrov-Bakelman type maximum principle and applications.J. Diff. Equations 101 (1993), 213-231. Zbl 0812.35014, MR 1204327
Reference: [LT] Luo Y., Trudinger N.S.: Linear second order elliptic equations with Venttsel boundary conditions.Proc. Roy. Soc. Edinburgh 118A (1991), 193-207. Zbl 0771.35014, MR 1121663
Reference: [M] Miranda C.: Sulle equazioni ellittiche del secondo ordine di tipo non variazionale, a coefficienti discontinui.Ann. Mat. Pura Appl. 63 (1963), 353-386. Zbl 0156.34001, MR 0170090
Reference: [NF] Nicolosi F.: Il terzo problema al contorno per le equazioni lineari ellittiche a coefficienti discontinui.Rend. Circ. Mat. Palermo 33 (1984), 351-368.
Reference: [NL] Nirenberg L.: On elliptic partial differential equations.Ann. Scuola Norm. Sup. Pisa (3) 13 (1959), 115-162. Zbl 0088.07601, MR 0109940
Reference: [S] Sarason D.: Functions of vanishing mean oscillation.Trans. Amer. Math. Soc. 207 (1975), 391-405. Zbl 0319.42006, MR 0377518
Reference: [T] Talenti G.: Problemi di derivata obliqua per equazioni ellittiche in due variabili.Boll. Un. Mat. Ital. (3) 22 (1967), 505-526. Zbl 0156.33803, MR 0231048
Reference: [V] Viola G.: Una stima a priori per la soluzione del terzo problema al contorno associato ad una classe di equazioni ellittiche del secondo ordine a coefficienti non regolari.Boll. Un. Mat. Ital. (6) 3-B (1984), 397-411.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_37-1996-3_12.pdf 310.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo