Title:
|
Oblique derivative problem for elliptic equations in non-divergence form with $VMO$ coefficients (English) |
Author:
|
di Fazio, G. |
Author:
|
Palagachev, D. K. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
37 |
Issue:
|
3 |
Year:
|
1996 |
Pages:
|
537-556 |
. |
Category:
|
math |
. |
Summary:
|
A priori estimates and strong solvability results in Sobolev space $W^{2,p}(\Omega)$, $1<p<\infty$ are proved for the regular oblique derivative problem $$ \begin{cases} \sum_{i,j=1}^n a^{ij}(x)\frac{\partial^2u}{\partial x_i\partial x_j} =f(x) \text{ a.e. } \Omega \\ \frac{\partial u}{\partial \ell}+\sigma(x)u =\varphi(x) \text{ on } \partial \Omega \end{cases} $$ when the principal coefficients $a^{ij}$ are $V\kern -1.2pt MO\cap L^\infty$ functions. (English) |
Keyword:
|
oblique derivative |
Keyword:
|
elliptic equation |
Keyword:
|
non divergence form |
Keyword:
|
$V\kern -1.2pt MO$ coefficients |
Keyword:
|
strong solution |
MSC:
|
35J25 |
idZBL:
|
Zbl 0881.35028 |
idMR:
|
MR1426919 |
. |
Date available:
|
2009-01-08T18:26:00Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118861 |
. |
Reference:
|
[A] Acquistapace P.: On $BMO$ regularity for linear elliptic systems.Ann. Mat. Pura Appl. 161 (1992), 231-270. Zbl 0802.35015, MR 1174819 |
Reference:
|
[ADN] Agmon S., Douglis A., Nirenberg L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I.Comm. Pure Appl. Math. 12 (1959), 623-727. Zbl 0093.10401, MR 0125307 |
Reference:
|
[AR] Adams R.: Sobolev Spaces.Academic Press, New York, 1975. Zbl 1098.46001, MR 0450957 |
Reference:
|
[B] Bramanti M.: Commutators of integral operators with positive kernels.Le Matematiche XLIX (1994), 149-168. Zbl 0840.42009, MR 1386370 |
Reference:
|
[C1] Chicco M.: Third boundary value problem in $H^{2,p}(Ømega)$ for a class of linear second order elliptic partial differential equations.Rend. Ist. Mat. Univ. Trieste 4 (1972), 85-94. MR 0348258 |
Reference:
|
[C2] Chicco M.: Terzo problema al contorno per una classe di equazioni ellittiche del secondo ordine a coefficienti discontinui.Ann. Mat. Pura Appl. (4) 112 (1977), 241-259; errata, ibid. (4) 130 (1982), 399-401. MR 0435582 |
Reference:
|
[CFL1] Chiarenza F., Frasca M., Longo P.: Interior $W^{2,p}$ estimates for non divergence elliptic equations with discontinuous coefficients.Ricerche di Mat. 60 (1991), 149-168. MR 1191890 |
Reference:
|
[CFL2] Chiarenza F., Frasca M., Longo P.: $W^{2,p}$-solvability of the Dirichlet problem for non divergence elliptic equations with $V MO$ coefficients.Trans. Amer. Math. Soc. 336 (1993), 841-853. Zbl 0818.35023, MR 1088476 |
Reference:
|
[GT] Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order.2nd ed., Springer-Verlag, Berlin, 1983. Zbl 1042.35002, MR 0737190 |
Reference:
|
[JN] John F., Nirenberg L.: On functions of bounded mean oscillation.Comm. Pure Appl. Math. 14 (1961), 415-426. Zbl 0102.04302, MR 0131498 |
Reference:
|
[L] Luo Y.: An Aleksandrov-Bakelman type maximum principle and applications.J. Diff. Equations 101 (1993), 213-231. Zbl 0812.35014, MR 1204327 |
Reference:
|
[LT] Luo Y., Trudinger N.S.: Linear second order elliptic equations with Venttsel boundary conditions.Proc. Roy. Soc. Edinburgh 118A (1991), 193-207. Zbl 0771.35014, MR 1121663 |
Reference:
|
[M] Miranda C.: Sulle equazioni ellittiche del secondo ordine di tipo non variazionale, a coefficienti discontinui.Ann. Mat. Pura Appl. 63 (1963), 353-386. Zbl 0156.34001, MR 0170090 |
Reference:
|
[NF] Nicolosi F.: Il terzo problema al contorno per le equazioni lineari ellittiche a coefficienti discontinui.Rend. Circ. Mat. Palermo 33 (1984), 351-368. |
Reference:
|
[NL] Nirenberg L.: On elliptic partial differential equations.Ann. Scuola Norm. Sup. Pisa (3) 13 (1959), 115-162. Zbl 0088.07601, MR 0109940 |
Reference:
|
[S] Sarason D.: Functions of vanishing mean oscillation.Trans. Amer. Math. Soc. 207 (1975), 391-405. Zbl 0319.42006, MR 0377518 |
Reference:
|
[T] Talenti G.: Problemi di derivata obliqua per equazioni ellittiche in due variabili.Boll. Un. Mat. Ital. (3) 22 (1967), 505-526. Zbl 0156.33803, MR 0231048 |
Reference:
|
[V] Viola G.: Una stima a priori per la soluzione del terzo problema al contorno associato ad una classe di equazioni ellittiche del secondo ordine a coefficienti non regolari.Boll. Un. Mat. Ital. (6) 3-B (1984), 397-411. |
. |