Previous |  Up |  Next

Article

Title: Pseudocompactness and the cozero part of a frame (English)
Author: Banaschewski, Bernhard
Author: Gilmour, Christopher
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 37
Issue: 3
Year: 1996
Pages: 577-587
.
Category: math
.
Summary: A characterization of the cozero elements of a frame, without reference to the reals, is given and is used to obtain a characterization of pseudocompactness also independent of the reals. Applications are made to the congruence frame of a $\sigma$-frame and to Alexandroff spaces. (English)
Keyword: pseudocompact frames
Keyword: $\sigma$-frames
Keyword: cozero elements and Alexandroff spaces
MSC: 06B10
MSC: 54C50
MSC: 54D20
idZBL: Zbl 0881.54018
idMR: MR1426922
.
Date available: 2009-01-08T18:26:17Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118864
.
Reference: [1] Baboolal D., Banaschewski B.: Compactification and local connectedness of frames.J. Pure Appl. Algebra 70 (1991), 3-16. Zbl 0722.54031, MR 1100502
Reference: [2] Banaschewski B.: The frame envelope of a $\sigma$-frame.Quaestiones Math. 16.1 (1993), 51-60. Zbl 0779.06009, MR 1217474
Reference: [3] Banaschewski B., Frith J., Gilmour C.: On the congruence lattice of a frame.Pacific J. Math. 130.2 (1987), 209-213. Zbl 0637.06006, MR 0914098
Reference: [4] Banaschewski B., Gilmour C.: Stone-Čech compactification and dimension theory for regular $\sigma$-frames.J. London Math. Soc. (2) No.127, 39, part 1 (1989), 1-8. Zbl 0675.06005, MR 0989914
Reference: [5] Banaschewski B., Mulvey C.: Stone-Čech compactification of locales I.Houston J. of Math. 6.3 (1980), 301-312. Zbl 0473.54026, MR 0597771
Reference: [6] Banaschewski B., Mulvey C.: Stone-Čech compactification of locales II.J. Pure Appl. Algebra 33 (1984), 107-122. Zbl 0549.54017, MR 0754950
Reference: [7] Banaschewski B., Pultr A.: Paracompactness revisited.Applied Categorical Structures 1 (1993), 181-190. Zbl 0797.54032, MR 1245799
Reference: [8] Gilmour C.: Realcompact Alexandroff spaces and regular $\sigma$-frames.PhD Thesis, University of Cape Town, 1981. Zbl 0601.54019
Reference: [9] Gilmour C.: Realcompact Alexandroff spaces and regular $\sigma$-frames.Math. Proc. Cambridge Philos. Soc. 96 (1984), 73-79. MR 0743702
Reference: [10] Gordon H.: Rings of functions determined by zero-sets.Pacific J. Math. 36 (1971), 133-157. Zbl 0185.38803, MR 0320996
Reference: [11] Johnstone P.T.: Stone Spaces.Cambridge Studies in Advanced Math. 3, Cambridge Univ. Press, 1982. Zbl 0586.54001, MR 0698074
Reference: [12] Kennison J.: $m$-Pseudocompactness.Trans. Amer. Math. Soc. 104 (1962), 436-442. Zbl 0111.35004, MR 0145478
Reference: [13] Madden J.: $\kappa$-Frames.J. Pure Appl. Algebra 70 (1991), 107-127. Zbl 0721.06006, MR 1100510
Reference: [14] Madden J., Vermeer H.: Lindelöf locales and realcompactness.Math. Proc. Camb. Phil. Soc. 99 (1986), 473-480. Zbl 0603.54021, MR 0830360
Reference: [15] Marcus N.: Realcompactifications of frames.MSc Thesis, University of Cape Town, 1994.
Reference: [16] Reynolds G.: On the spectrum of a real representable ring.Applications of Sheaves, Springer LNM 753 (1977), 595-611. Zbl 0426.18002, MR 0555563
Reference: [17] Reynolds G.: Alexandroff algebras and complete regularity.Proc. Amer. Math. Soc. 76 (1979), 322-326. Zbl 0416.54015, MR 0537098
Reference: [18] Walters J.: Uniform sigma frames and the cozero part of uniform frames.MSc Thesis, University of Cape Town, 1990.
Reference: [19] Walters J.: Compactifications and uniformities on sigma frames.Comment. Math. Univ. Carolinae 32.1 (1991), 189-198. Zbl 0735.54014, MR 1118301
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_37-1996-3_15.pdf 238.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo