Title:
|
Pseudocompactness and the cozero part of a frame (English) |
Author:
|
Banaschewski, Bernhard |
Author:
|
Gilmour, Christopher |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
37 |
Issue:
|
3 |
Year:
|
1996 |
Pages:
|
577-587 |
. |
Category:
|
math |
. |
Summary:
|
A characterization of the cozero elements of a frame, without reference to the reals, is given and is used to obtain a characterization of pseudocompactness also independent of the reals. Applications are made to the congruence frame of a $\sigma$-frame and to Alexandroff spaces. (English) |
Keyword:
|
pseudocompact frames |
Keyword:
|
$\sigma$-frames |
Keyword:
|
cozero elements and Alexandroff spaces |
MSC:
|
06B10 |
MSC:
|
54C50 |
MSC:
|
54D20 |
idZBL:
|
Zbl 0881.54018 |
idMR:
|
MR1426922 |
. |
Date available:
|
2009-01-08T18:26:17Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118864 |
. |
Reference:
|
[1] Baboolal D., Banaschewski B.: Compactification and local connectedness of frames.J. Pure Appl. Algebra 70 (1991), 3-16. Zbl 0722.54031, MR 1100502 |
Reference:
|
[2] Banaschewski B.: The frame envelope of a $\sigma$-frame.Quaestiones Math. 16.1 (1993), 51-60. Zbl 0779.06009, MR 1217474 |
Reference:
|
[3] Banaschewski B., Frith J., Gilmour C.: On the congruence lattice of a frame.Pacific J. Math. 130.2 (1987), 209-213. Zbl 0637.06006, MR 0914098 |
Reference:
|
[4] Banaschewski B., Gilmour C.: Stone-Čech compactification and dimension theory for regular $\sigma$-frames.J. London Math. Soc. (2) No.127, 39, part 1 (1989), 1-8. Zbl 0675.06005, MR 0989914 |
Reference:
|
[5] Banaschewski B., Mulvey C.: Stone-Čech compactification of locales I.Houston J. of Math. 6.3 (1980), 301-312. Zbl 0473.54026, MR 0597771 |
Reference:
|
[6] Banaschewski B., Mulvey C.: Stone-Čech compactification of locales II.J. Pure Appl. Algebra 33 (1984), 107-122. Zbl 0549.54017, MR 0754950 |
Reference:
|
[7] Banaschewski B., Pultr A.: Paracompactness revisited.Applied Categorical Structures 1 (1993), 181-190. Zbl 0797.54032, MR 1245799 |
Reference:
|
[8] Gilmour C.: Realcompact Alexandroff spaces and regular $\sigma$-frames.PhD Thesis, University of Cape Town, 1981. Zbl 0601.54019 |
Reference:
|
[9] Gilmour C.: Realcompact Alexandroff spaces and regular $\sigma$-frames.Math. Proc. Cambridge Philos. Soc. 96 (1984), 73-79. MR 0743702 |
Reference:
|
[10] Gordon H.: Rings of functions determined by zero-sets.Pacific J. Math. 36 (1971), 133-157. Zbl 0185.38803, MR 0320996 |
Reference:
|
[11] Johnstone P.T.: Stone Spaces.Cambridge Studies in Advanced Math. 3, Cambridge Univ. Press, 1982. Zbl 0586.54001, MR 0698074 |
Reference:
|
[12] Kennison J.: $m$-Pseudocompactness.Trans. Amer. Math. Soc. 104 (1962), 436-442. Zbl 0111.35004, MR 0145478 |
Reference:
|
[13] Madden J.: $\kappa$-Frames.J. Pure Appl. Algebra 70 (1991), 107-127. Zbl 0721.06006, MR 1100510 |
Reference:
|
[14] Madden J., Vermeer H.: Lindelöf locales and realcompactness.Math. Proc. Camb. Phil. Soc. 99 (1986), 473-480. Zbl 0603.54021, MR 0830360 |
Reference:
|
[15] Marcus N.: Realcompactifications of frames.MSc Thesis, University of Cape Town, 1994. |
Reference:
|
[16] Reynolds G.: On the spectrum of a real representable ring.Applications of Sheaves, Springer LNM 753 (1977), 595-611. Zbl 0426.18002, MR 0555563 |
Reference:
|
[17] Reynolds G.: Alexandroff algebras and complete regularity.Proc. Amer. Math. Soc. 76 (1979), 322-326. Zbl 0416.54015, MR 0537098 |
Reference:
|
[18] Walters J.: Uniform sigma frames and the cozero part of uniform frames.MSc Thesis, University of Cape Town, 1990. |
Reference:
|
[19] Walters J.: Compactifications and uniformities on sigma frames.Comment. Math. Univ. Carolinae 32.1 (1991), 189-198. Zbl 0735.54014, MR 1118301 |
. |