Previous |  Up |  Next

Article

Title: The ambient homeomorphy of certain function and sequence spaces (English)
Author: Dijkstra, Jan J.
Author: Mogilski, Jerzy
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 37
Issue: 3
Year: 1996
Pages: 595-611
.
Category: math
.
Summary: In this paper we consider a number of sequence and function spaces that are known to be homeomorphic to the countable product of the linear space $\sigma$. The spaces we are interested in have a canonical imbedding in both a topological Hilbert space and a Hilbert cube. It turns out that when we consider these spaces as subsets of a Hilbert cube then there is only one topological type. For imbeddings in the countable product of lines there are two types depending on whether the space is contained in a $\sigma$-compactum or not. (English)
Keyword: Hilbert space
Keyword: Hilbert cube
Keyword: $\Cal F_{\sigma\delta}$-absorber
Keyword: ambient homeomorphism
Keyword: function space
Keyword: $p$-summable sequence
MSC: 54C35
MSC: 57N17
MSC: 57N20
idZBL: Zbl 0881.57018
idMR: MR1426924
.
Date available: 2009-01-08T18:26:27Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118866
.
Reference: [1] Baars J., Gladdines H., van Mill J.: Absorbing systems in infinite-dimensional manifolds.Topology Appl. 50 (1993), 147-182. Zbl 0794.57005, MR 1217483
Reference: [2] Bessaga C., Pełczyński A.: Selected Topics in Infinite-Dimensional Topology.PWN Warsaw (1975).
Reference: [3] Curtis D.W.: Boundary sets in the Hilbert cube.Topology Appl. 20 (1985), 201-221. Zbl 0575.57008, MR 0804034
Reference: [4] Dijkstra J.J., Dobrowolski T., Marciszewski W., van Mill J., Mogilski J.: Recent classification and characterization results in geometric topology.Bull. Amer. Math. Soc. 22 (1990), 277-283. Zbl 0713.57011, MR 1027899
Reference: [5] Dijkstra J.J., van Mill J., Mogilski J.: The space of infinite-dimensional compacta and other topological copies of $(l^2_{an f})^ømega$.Pacific. J. Math. 152 (1992), 255-273. MR 1141795
Reference: [6] Dijkstra J.J., Mogilski J.: The topological product structure of systems of Lebesgue spaces.Math. Ann. 290 (1991), 527-543. Zbl 0734.46013, MR 1116236
Reference: [7] Dobrowolski T., Marciszewski W., Mogilski J.: On topological classification of function spaces $C_{an p}(X)$ of low Borel complexity.Trans. Amer. Math. Soc. 328 (1991), 307-324. MR 1065602
Reference: [8] Dobrowolski T., Mogilski J.: Problems on topological classification of incomplete metric spaces.409-429 in Open Problems in Topology, J. van Mill and G.M. Reed, eds., North-Holland, Amsterdam, 1990. MR 1078661
Reference: [9] Dobrowolski T., Mogilski J.: Certain sequence and function spaces homeomorphic to the countable product of $l_f^2$.J. London Math. Soc. 45.2 (1992), 566-576. MR 1180263
Reference: [10] Lutzer D., McCoy R.: Category in function spaces I.Pacific J. Math. 90 (1980), 145-168. Zbl 0481.54017, MR 0599327
Reference: [11] van Mill J.: Topological equivalence of certain function spaces.Compositio Math. 63 (1987), 159-188. Zbl 0634.54011, MR 0906368
Reference: [12] van Mill J.: Infinite-Dimensional Topology, Prerequisites and Introduction.North-Holland Amsterdam (1989). Zbl 0663.57001, MR 0977744
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_37-1996-3_17.pdf 288.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo