Previous |  Up |  Next

Article

Title: On the cardinality of functionally Hausdorff spaces (English)
Author: Fedeli, Alessandro
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 37
Issue: 4
Year: 1996
Pages: 797-801
.
Category: math
.
Summary: In this paper two new cardinal functions are introduced and investigated. In particular the following two theorems are proved: \noindent {\rm (i)} If $\,X$ is a functionally Hausdorff space then $|X| \leq 2^{fs(X) \psi_{\tau}(X)}$; \noindent {\rm (ii)} Let $X$ be a functionally Hausdorff space with $fs(X) \leq \kappa$. Then there is a subset $S$ of $X$ such that $|S| \leq 2^{\kappa}$ and $X = \bigcup \{ cl_{\tau \theta}(A): A \in [S]^{\leq \kappa} \}$. (English)
Keyword: cardinal functions
Keyword: $\tau$-pseudocharacter
Keyword: functional spread
MSC: 54A25
MSC: 54D10
MSC: 54D70
idZBL: Zbl 0886.54004
idMR: MR1440709
.
Date available: 2009-01-08T18:27:58Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118886
.
Reference: [1] Engelking R.: General Topology. Revised and completed edition.Sigma Series in Pure Mathematics 6, Heldermann Verlag, Berlin (1989). MR 1039321
Reference: [2] Fedeli A.: Two cardinal inequalities for functionally Hausdorff spaces.Comment. Math. Univ. Carolinae 35.2 (1994), 365-369. Zbl 0807.54006, MR 1286584
Reference: [3] Fedeli A., Watson S.: Elementary Submodels in Topology.submitted.
Reference: [4] Hodel R.: Cardinal Functions I.Handbook of Set-theoretic Topology, (Kunen K. and Vaughan J.E., eds.) Elsevier Science Publishers, B.V., North Holland, 1984, pp. 1-61. Zbl 0559.54003, MR 0776620
Reference: [5] Ishii T.: On the Tychonoff functor and w-compactness.Topology Appl. 11 (1980), 175-187. Zbl 0441.54012, MR 0572372
Reference: [6] Ishii T.: The Tychonoff functor and related topics.Topics in General Topology, (Morita K. and Nagata J., eds.) Elsevier Science Publishers, B.V., North Holland, 1989, pp. 203-243. Zbl 0763.54009, MR 1053197
Reference: [7] Juhàsz I.: Cardinal functions in topology-ten years later.Mathematical Centre Tracts 123, Amsterdam, 1980. MR 0576927
Reference: [8] Kočinac Lj.: Some cardinal functions on Urysohn spaces.to appear. MR 1385570
Reference: [9] Kočinac Lj.: On the cardinality of Urysohn and $H$-closed spaces.Proc. of the Mathematical Conference in Priština, 1994, pp. 105-111. MR 1466279
Reference: [10] Schröder J.: Urysohn cellularity and Urysohn spread.Math. Japonicae 38 (1993), 1129-1133. MR 1250339
Reference: [11] Shapirovskii B.: On discrete subspaces of topological spaces. Weight, tightness and Suslin number.Soviet Math. Dokl. 13 (1972), 215-219.
Reference: [12] Sun S.H., Choo K.G.: Some new cardinal inequalities involving a cardinal function less than the spread and the density.Comment. Math. Univ. Carolinae 31.2 (1990), 395-401. Zbl 0717.54002, MR 1077911
Reference: [13] Watson S.: The construction of topological spaces: Planks and Resolutions.Recent Progress in General Topology, (Hušek M. and Van Mill J., eds.) Elsevier Science Publishers, B.V., North Holland, 1992, pp. 675-757. Zbl 0803.54001, MR 1229141
Reference: [14] Watson S.: The Lindelöf number of a power: an introduction to the use of elementary submodels in general topology.Topology Appl. 58 (1994), 25-34. Zbl 0836.54004, MR 1280708
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_37-1996-4_11.pdf 188.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo