Previous |  Up |  Next

Article

Title: A note on topology of $Z$-continuous posets (English)
Author: Menon, Venu G.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 37
Issue: 4
Year: 1996
Pages: 821-824
.
Category: math
.
Summary: $Z$-continuous posets are common generalizations of continuous posets, completely distributive lattices, and unique factorization posets. Though the algebraic properties of $Z$-continuous posets had been studied by several authors, the topological properties are rather unknown. In this short note an intrinsic topology on a $Z$-continuous poset is defined and its properties are explored. (English)
Keyword: $Z$-continuous posets
Keyword: intrinsic topology
MSC: 06B30
MSC: 06B35
MSC: 54F05
idZBL: Zbl 0888.06005
idMR: MR1440713
.
Date available: 2009-01-08T18:28:15Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118890
.
Reference: [BE] Bandelt H.J., Erné M.: The category of $Z$-continuous posets.J. Pure Appl. Algebra 30 (1983), 219-226. MR 0724033
Reference: [COMP] Gierz G., Hofmann K.H., Keimel K., Lawson J.D., Mislove M., Scott D.S.: A Compendium of Continuous Lattices.Springer-Verlag, Berlin, Heidelberg, and New York, 1980. Zbl 0452.06001, MR 0614752
Reference: [M] Martinez J.: Unique factorization in partially ordered sets.Proc. Amer. Math. Soc. 33 (1972), 213-220. Zbl 0241.06007, MR 0292723
Reference: [N] Novak D.: Generalization of continuous posets.Trans. Amer. Math. Soc. 272 (1982), 645-667. Zbl 0504.06003, MR 0662058
Reference: [R] Raney G.: A subdirect-union representation for completely distributive lattices.Proc. Amer. Math. Soc. 4 (1953), 518-522. MR 0058568
Reference: [V1] Venugopalan P.: $Z$-continuous posets.Houston J. Math. 12 (1986), 275-294. Zbl 0614.06007, MR 0862043
Reference: [V2] Venugopalan P.: Union complete subset system.Houston J. Math. 14 (1988), 583-600. MR 0998459
Reference: [WWT] Wright J.B., Wagner E.G., Thatcher J.W.: A uniform approach to inductive posets and inductive closure.Theor. Computer Science 7 (1978), 57-77. Zbl 0732.06001, MR 0480224
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_37-1996-4_15.pdf 168.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo