Title:
|
A family of 4-designs on 26 points (English) |
Author:
|
Acketa, Dragan M. |
Author:
|
Mudrinski, Vojislav |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
37 |
Issue:
|
4 |
Year:
|
1996 |
Pages:
|
843-860 |
. |
Category:
|
math |
. |
Summary:
|
Using the Kramer-Mesner method, $4$-$(26,6,\lambda)$ designs with $PSL(2,25)$ as a group of automorphisms and with $\lambda$ in the set $\{30,51,60,81,90,111\}$ are constructed. The search uses specific partitioning of columns of the orbit incidence matrix, related to so-called ``quasi-designs''. Actions of groups $PSL(2,25)$, $PGL(2,25)$ and twisted $PGL(2,25)$ are being compared. It is shown that there exist $4$-$(26,6,\lambda)$ designs with $PGL(2,25)$, respectively twisted $PGL(2,25)$ as a group of automorphisms and with $\lambda$ in the set $\{51,60,81,90,111\}$. With $\lambda$ in the set $\{60,81\}$, there exist designs which possess all three considered groups as groups of automorphisms. An overview of $t$-$(q+1,k,\lambda)$ designs with $PSL(2,q)$ as group of automorphisms and with $(t,k) \in \{(4,5), (4,6), (5,6)\}$ is included. (English) |
Keyword:
|
block designs |
Keyword:
|
orbits |
Keyword:
|
projective linear group |
Keyword:
|
projective special linear group |
Keyword:
|
twisted projective linear group |
Keyword:
|
Kramer-Mesner method |
MSC:
|
05B05 |
MSC:
|
05B30 |
idZBL:
|
Zbl 0886.05038 |
idMR:
|
MR1440715 |
. |
Date available:
|
2009-01-08T18:28:26Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118892 |
. |
Reference:
|
[1] Acketa D.M., Mudrinski V.: A $4$-design on $38$ points.submitted. |
Reference:
|
[2] Acketa D.M., Mudrinski V., Paunić Dj.: A search for $4$-designs arising by action of $PGL(2,q)$.Publ. Elektrotehn. Fak., Univ. Beograd, Ser. Mat. 5 (1994), 13-18. Zbl 0816.05017, MR 1322263 |
Reference:
|
[3] Acketa D.M., Mudrinski V.: Two $5$-designs on $32$ points.accepted for Discrete Mathematics. Zbl 0873.05010 |
Reference:
|
[4] Alltop W.O.: An infinite class of $4$-designs.J. Comb. Th. 6 (1969), 320-322. Zbl 0169.01903, MR 0241316 |
Reference:
|
[5] Beth T., Jungnickel D., Lenz B.: Design Theory.Bibliographisches Institut Mannheim- Wien-Zürich, 1985. Zbl 0945.05005, MR 0779284 |
Reference:
|
[6] Chee Y.M., Colbourn C.J., Kreher D.L.: Simple $t$-designs with $t \leq 30$.Ars Combinatoria 29 (1990), 193-258. MR 1046108 |
Reference:
|
[7] Dautović S., Acketa D.M., Mudrinski V.: A graph approach to isomorphism testing of $4$-$(48,5,\lambda)$ designs arising from $PSL(2,47)$.submitted. |
Reference:
|
[8] Denniston R.H.F.: Some new $5$-designs.Bull. London Math. Soc. 8 (1976), 263-267. Zbl 0339.05019, MR 0480077 |
Reference:
|
[9] Driessen L.M.H.E.: $t$-designs, $t \geq 3$.Tech. Report (1978), Department of Mathematics, Eindhover University of Technology, Holland. |
Reference:
|
[10] Gorenstein D.: Finite Simple Groups, An Introduction to Their Classification.Plenum Press, New York, London, 1982. Zbl 0672.20010, MR 0698782 |
Reference:
|
[11] Huppert B.: Endliche Gruppen, I. Die Grundlehren der matematischen Wissenschaften.Band 134 (1967), Springer-Verlag, Berlin, Heidelberg, New York, xii + 793 pp. MR 0224703 |
Reference:
|
[12] Huppert B., Blackburn N.: Finite Groups, III..Die Grundlehren der matematischen Wissenschaften, Band 243 (1982), Springer-Verlag, Berlin, Heidelberg, New York, p.454. Zbl 0514.20002, MR 0662826 |
Reference:
|
[13] Janko Z., Tonchev V.: Private communication.. |
Reference:
|
[14] Kramer E.S., Leavitt D.W., Magliveras S.S.: Construction procedures for $t$-designs and the existence of new simple $6$-designs.Ann. Discrete Math. 26 (1985), 247-274. Zbl 0585.05002, MR 0833794 |
Reference:
|
[15] Kramer E.S., Mesner D.M.: $t$-designs on hypergraphs.Discrete Math. 15 (1976), 263-296. Zbl 0362.05049, MR 0460143 |
Reference:
|
[16] Kreher D.L., Radziszowski S.P.: The existence of simple $6$-$(14,7,4)$ designs.Jour. of Combinatorial Theory, Ser. A 43 (1986), 237-243. Zbl 0647.05013, MR 0867649 |
Reference:
|
[17] Kreher D.L., Radziszowski S.P.: Simple $5$-$(28,6,\lambda)$ designs from $PSL_2(27)$.Ann. Discrete Math. 34 (1987), 315-318. MR 0920656 |
. |