Previous |  Up |  Next

Article

Title: On a theorem of Fermi (English)
Author: Slavskii, V. V.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 37
Issue: 4
Year: 1996
Pages: 867-872
.
Category: math
.
Summary: Conformally flat metric $\bar g$ is said to be Ricci superosculating with $g$ at the point $x_0$ if $g_{ij}(x_0)=\bar g_{ij}(x_0)$, $\Gamma _{ij}^k(x_0)=\bar \Gamma _{ij}^k(x_0)$, $R_{ij}^k(x_0)=\bar R_{ij}^k(x_0)$, where $R_{ij}$ is the Ricci tensor. In this paper the following theorem is proved: \medskip {\sl If $\,\gamma $ is a smooth curve of the Riemannian manifold $M$ {\rm (}without self-crossing{\rm (}, then there is a neighbourhood of $\,\gamma $ and a conformally flat metric $\bar g$ which is the Ricci superosculating with $g$ along the curve $\gamma $.\/} (English)
Keyword: conformal connection
Keyword: development
MSC: 53A30
MSC: 53B20
MSC: 53C20
idZBL: Zbl 0888.53030
idMR: MR1440717
.
Date available: 2009-01-08T18:28:35Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118894
.
Reference: [1] Cartan E.: Leçons sur la Géometrie des Espaces de Riemann.Gauthier-Villars, Paris (1928), 242. MR 0020842
Reference: [2] Cartan E.: Les espaces à connection conforme.Ann. Soc. Po. Math. (1923), 2 171-221.
Reference: [3] Slavskii V.V.: Conformal development of the curve on the Riemannian manifold in the Minkowski space.Siberian Math. Journal 37 3 (1996), 676-699. MR 1434711
Reference: [4] Akivis M.A., Konnov V.V.: Sense local aspects of the theory of conformal structure.Russian Math. Surveys (1993), 48 3-40. MR 1227946
Reference: [5] Slavskii V.V.: Conformally flat metrics and the geometry of the pseudo-Euclidean space.Siberian Math. Jour. (1994), 35 3 674-682. MR 1292228
Reference: [6] Besse A.L.: Einstein Manifolds.Erg. Math. Grenzgeb. 10, Berlin-Heidelberg-New York (1987). Zbl 0613.53001, MR 0867684
Reference: [7] Reshetnyak Yu.G.: On the lifting of the non-regular path in the bundle manifold and its applications.Siberian Math. Jour. (1975), 16 3 588-598.
Reference: [8] Gray A., Vonhecke L.: The volumes of tubes about curves in a Riemannian manifold.Proc. London Math. Soc. (1982), 44 2 215-243. MR 0647431
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_37-1996-4_19.pdf 187.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo