Previous |  Up |  Next

Article

Title: Smooth approximation in weighted Sobolev spaces (English)
Author: Kilpeläinen, T.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 38
Issue: 1
Year: 1997
Pages: 29-35
.
Category: math
.
Summary: We give necessary and sufficient conditions for the equality $H=W$ in weighted Sobolev spaces. We also establish a Rellich-Kondrachov compactness theorem as well as a Lusin type approximation by Lipschitz functions in weighted Sobolev spaces. (English)
Keyword: weighted Sobolev spaces
Keyword: Poincaré inequality
MSC: 41A65
MSC: 46E35
idZBL: Zbl 0886.46035
idMR: MR1455468
.
Date available: 2009-01-08T18:28:55Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118900
.
Reference: [1] Chua S.-K.: Extension theorems on weighted Sobolev spaces.Indiana Univ. Math. J. (1992), 41 1027-1076. Zbl 0767.46025, MR 1206339
Reference: [2] Deny J., Lions J.L.: Les espaces du type de Beppo Levi.Ann. Inst. Fourier 5 (1953-54), 305-370. Zbl 0065.09903, MR 0074787
Reference: [3] Evans L.C., Gariepy R.R.: Measure Theory and Fine Properties of Functions.CRC Press Boca Raton (1992). Zbl 0804.28001, MR 1158660
Reference: [4] Fabes E.B., Kenig C.E., Serapioni R.P.: The local regularity of solutions of degenerate elliptic equations.Comm. P.D.E. 7 (1982), 77-116. Zbl 0498.35042, MR 0643158
Reference: [5] Hajłasz P.: Sobolev spaces on an arbitrary metric space.Potential Analysis 5 (1996), 403-415. MR 1401074
Reference: [6] Hajłasz P., Koskela P.: Sobolev meets Poincaré.C.R. Acad. Sci. Paris Sér. I (1995), 320 1211-1215. MR 1336257
Reference: [7] Heinonen J., Kilpeläinen T., Martio O.: Nonlinear Potential Theory of Degenerate Elliptic Equations.Oxford University Press Oxford (1993). MR 1207810
Reference: [8] Heinonen J., Koskela P.: Weighted Sobolev and Poincaré inequalities and quasiregular mappings of polynomial type.Math. Scand. 77 (1995), 251-271. Zbl 0860.30018, MR 1379269
Reference: [9] Kilpeläinen T.: Weighted Sobolev spaces and capacity.Ann. Acad. Sci. Fenn. Ser. A I. Math. 19 (1994), 95-113. MR 1246890
Reference: [10] Kufner A.: Weighted Sobolev Spaces.Wiley New York (1985). Zbl 0579.35021, MR 0802206
Reference: [11] Kufner A., Opic B.: How to define reasonably weighted Sobolev spaces.Comment. Math. Univ. Carol. 25 (1984), 537-554. Zbl 0557.46025, MR 0775568
Reference: [12] Liu F.-C.: A Lusin type property of Sobolev functions.Indiana Univ. Math. J. 26 (1977), 645-651. MR 0450488
Reference: [13] Meyers N., Serrin J.: $H=W$.Proc. Nat. Acad, Sci. USA 51 (1964), 1055-1056. Zbl 0123.30501, MR 0164252
Reference: [14] Stein E.M.: Harmonic Analysis.Princeton University Press Princeton, New Jersey (1993). Zbl 0821.42001, MR 1232192
Reference: [15] Turesson B.O.: Nonlinear potential theory and weighted Sobolev spaces.Thesis, University of Linköping, 1995. Zbl 0949.31006, MR 1371571
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_38-1997-1_3.pdf 197.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo