Article
Keywords:
prime ring; semiprime ring; extended centroid; derivation; Jordan derivation; left (right) centralizer; Jordan left (right) centralizer; commuting mapping; centralizing mapping
Summary:
The purpose of this paper is to investigate identities satisfied by centralizers on prime and semiprime rings. We prove the following result: Let $R$ be a noncommutative prime ring of characteristic different from two and let $S$ and $T$ be left centralizers on $R$. Suppose that $[S(x),T(x)]S(x)+S(x)[S(x),T(x)]=0$ is fulfilled for all $x\in R$. If $S\neq 0$ $(T\neq 0)$ then there exists $\lambda $ from the extended centroid of $R$ such that $T=\lambda S$ $(S=\lambda T)$.
References:
                        
[1] Brešar M., Vukman J.: 
Jordan derivations on prime rings. Bull. Austral. Math. Soc. 37 (1988), 321-323. 
MR 0943433[2] Brešar M.: 
Jordan derivations on prime rings. Proc. Amer. Math. Soc. 104 (1988), 1003-1006. 
MR 0929422[3] Brešar M.: 
On a generalization of the notion of centralizing mappings. Proc. Amer. Math. Soc. 114 (1992), 641-649. 
MR 1072330[4] Brešar M.: 
Centralizing mappings and derivations in prime rings. Journal of Algebra 156 (1993), 385-394. 
MR 1216475[5] Brešar M.: 
Commuting traces of biaditive mappings, commutativity-preserving mappings and Lie mappings. Trans. Amer. Math. Soc. 335 (1993), 525-545. 
MR 1069746[6] Cusak J.: 
Jordan derivations on rings. Proc. Amer. Math. Soc. 53 (1975), 321-324. 
MR 0399182[7] Herstein I.N.: 
Jordan derivations on prime rings. Proc. Amer. Math. Soc. 8 (1957), 1104-1110. 
MR 0095864[9] Martindale W.S.: 
Prime rings satisfying a generalized polynomial identity. Journal of Algebra 12 (1969), 576-584. 
MR 0238897 | 
Zbl 0175.03102[10] Posner E.: 
Derivations in prime rings. Proc. Amer. Math. Soc. 8 (1957), 1093-1100. 
MR 0095863[11] Zalar B.: 
On centralizers of semiprime rings. Comment. Math. Univ. Carolinae 32 (1991), 609-614. 
MR 1159807 | 
Zbl 0746.16011