Previous |  Up |  Next

Article

Title: Pseudomonotonicity and nonlinear hyperbolic equations (English)
Author: Kandilakis, Dimitrios A.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 38
Issue: 3
Year: 1997
Pages: 463-469
.
Category: math
.
Summary: In this paper we consider a nonlinear hyperbolic boundary value problem. We show that this problem admits weak solutions by using a lifting result for pseudomonotone operators and a surjectivity result concerning coercive and monotone operators. (English)
Keyword: pseudomonotone operator
Keyword: demicontinuous operator
Keyword: maximal monotone operator
Keyword: weak solution
MSC: 35A05
MSC: 35D05
MSC: 35L20
MSC: 35L70
MSC: 47H05
idZBL: Zbl 0940.35123
idMR: MR1485068
.
Date available: 2009-01-08T18:35:29Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118945
.
Reference: [1] Ash R.: Analysis and Probability.Academic Press, NY, 1972.
Reference: [2] Barbu V.: Nonlinear Semigroups and Differential Equations in Banach Spaces.Noordhoff Inter. Pub. Leyden, The Netherlands. Zbl 0328.47035, MR 0390843
Reference: [3] Gossez J.-P., Mustonen V.: Pseudomonotonicity and the Leray-Lions condition.Diff. and Integral Equations 6 (1993), 37-45. MR 1190164
Reference: [4] Lions J.-L.: Quelques Methodes de Resolution des Problemes aux Limites Non-Lineaires.Dunod, Paris, 1969. Zbl 0248.35001, MR 0259693
Reference: [5] Papageorgiou N.S.: Existence of solutions for second order evolution inclusions.J. Appl. Math and Stoch. Anal. 4, vol. 7 (1994), pp.525-535. Zbl 0857.34028, MR 1310925
Reference: [6] Ton B.-A.: Nonlinear evolution equations in Banach spaces.J. Diff. Equations 9 (1971), 608-618. Zbl 0227.47043, MR 0300172
Reference: [7] Zeidler E.: Nonlinear Functional Analysis and its Applications.Springer Verlag, NY, 1990. Zbl 0794.47033
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_38-1997-3_4.pdf 197.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo