Title:
|
Pseudomonotonicity and nonlinear hyperbolic equations (English) |
Author:
|
Kandilakis, Dimitrios A. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
38 |
Issue:
|
3 |
Year:
|
1997 |
Pages:
|
463-469 |
. |
Category:
|
math |
. |
Summary:
|
In this paper we consider a nonlinear hyperbolic boundary value problem. We show that this problem admits weak solutions by using a lifting result for pseudomonotone operators and a surjectivity result concerning coercive and monotone operators. (English) |
Keyword:
|
pseudomonotone operator |
Keyword:
|
demicontinuous operator |
Keyword:
|
maximal monotone operator |
Keyword:
|
weak solution |
MSC:
|
35A05 |
MSC:
|
35D05 |
MSC:
|
35L20 |
MSC:
|
35L70 |
MSC:
|
47H05 |
idZBL:
|
Zbl 0940.35123 |
idMR:
|
MR1485068 |
. |
Date available:
|
2009-01-08T18:35:29Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118945 |
. |
Reference:
|
[1] Ash R.: Analysis and Probability.Academic Press, NY, 1972. |
Reference:
|
[2] Barbu V.: Nonlinear Semigroups and Differential Equations in Banach Spaces.Noordhoff Inter. Pub. Leyden, The Netherlands. Zbl 0328.47035, MR 0390843 |
Reference:
|
[3] Gossez J.-P., Mustonen V.: Pseudomonotonicity and the Leray-Lions condition.Diff. and Integral Equations 6 (1993), 37-45. MR 1190164 |
Reference:
|
[4] Lions J.-L.: Quelques Methodes de Resolution des Problemes aux Limites Non-Lineaires.Dunod, Paris, 1969. Zbl 0248.35001, MR 0259693 |
Reference:
|
[5] Papageorgiou N.S.: Existence of solutions for second order evolution inclusions.J. Appl. Math and Stoch. Anal. 4, vol. 7 (1994), pp.525-535. Zbl 0857.34028, MR 1310925 |
Reference:
|
[6] Ton B.-A.: Nonlinear evolution equations in Banach spaces.J. Diff. Equations 9 (1971), 608-618. Zbl 0227.47043, MR 0300172 |
Reference:
|
[7] Zeidler E.: Nonlinear Functional Analysis and its Applications.Springer Verlag, NY, 1990. Zbl 0794.47033 |
. |