Previous |  Up |  Next

Article

Title: A two-weight inequality for the Bessel potential operator (English)
Author: Rakotondratsimba, Y.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 38
Issue: 3
Year: 1997
Pages: 497-511
.
Category: math
.
Summary: Necessary conditions and sufficient conditions are derived in order that \linebreak Bessel potential operator $J_{s,\lambda }$ is bounded from the weighted Lebesgue spaces $L_{v}^{p}=L^{p}(\Bbb R^n,v(x)dx)$ into $L_{u}^{q}$ when $1<p\leq q<\infty $. (English)
Keyword: weighted inequalities
Keyword: Bessel potential operators
Keyword: Riesz potential operators
MSC: 26D10
MSC: 42B20
MSC: 42B25
MSC: 46E35
MSC: 47B38
idZBL: Zbl 0941.42007
idMR: MR1485071
.
Date available: 2009-01-08T18:35:43Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118948
.
Reference: [Ad1] Adams D.R.: On the existence of capacity strong type estimates in $\Bbb R^n$.Ark. Mat. 14 (1976), 125-140. MR 0417774
Reference: [Ad2] Adams D.R.: Weighted nonlinear potential theory.Trans. Amer. Math. Soc. 297 (1986), 73-94. Zbl 0656.31012, MR 0849468
Reference: [Ad-Pi] Adams D.R.: Capacitary strong type estimates in semilinear problems.Ann. Inst. Fourier (Grenoble) 41 (1991), 117-135. Zbl 0741.35012, MR 1112194
Reference: [Ar-Sm] Aronszajn N., Smith K.: Theory of Bessel potentials.Ann. Inst. Fourier 11 Part I (1961), 385-475. Zbl 0102.32401, MR 0143935
Reference: [Ch-Wh] Chanillo S., Wheeden R.: $L^p$ estimates for fractional integrals and Sobolev inequalities with applications to Schrödinger operators.Comm. Partial Differential Equations 10 (1985), 1077-1116. MR 0806256
Reference: [Ke-Sa] Kerman R., Sawyer E.: Weighted norm inequalities for potentials with applications to Schrödinger operators, Fourier transform and Carleson measures.Ann. Inst. Fourier (Grenoble) 36 (1986), 207-228. MR 0766965
Reference: [Ma] Maz'ya V.G.: Sobolev Spaces.Springer-Verlag, Berlin-New York, 1985. Zbl 1152.46002, MR 0817985
Reference: [Ma-Ve] Maz'ya V.G., Verbitsky I.E.: Capacitary inequalities for fractional integrals, with applications to differential equations and SObolev multipliers.Ark. Mat. 33 (1995), 81-115. MR 1340271
Reference: [Sa-Wh] Sawyer E., Wheeden R.: Weighted inequalities for fractional integrals on euclidean and homogeneous spaces.Amer. J. Math. 114 (1992), 813-874. Zbl 0783.42011, MR 1175693
Reference: [Sc] Schechter M.: Multiplication operators.Canad. J. Math. LXI (1989), 234-249. Zbl 0665.46028, MR 1001610
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_38-1997-3_7.pdf 264.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo