Title:
|
Choice principles in elementary topology and analysis (English) |
Author:
|
Herrlich, Horst |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
38 |
Issue:
|
3 |
Year:
|
1997 |
Pages:
|
545-552 |
. |
Category:
|
math |
. |
Summary:
|
Many fundamental mathematical results fail in {\bf{ZF}}, i.e., in Zermelo-Fraenkel set theory without the Axiom of Choice. This article surveys results --- old and new --- that specify how much ``choice'' is needed {\it precisely} to validate each of certain basic analytical and topological results. (English) |
Keyword:
|
Axiom of (Countable) Choice |
Keyword:
|
Boolean Prime Ideal Theorem |
Keyword:
|
Theorems of Ascoli |
Keyword:
|
Baire |
Keyword:
|
Čech-Stone and Tychonoff |
Keyword:
|
compact |
Keyword:
|
Lindelöf and orderable spaces |
MSC:
|
03E25 |
MSC:
|
04A25 |
MSC:
|
26A03 |
MSC:
|
26A15 |
MSC:
|
54A35 |
MSC:
|
54B10 |
MSC:
|
54C35 |
MSC:
|
54D20 |
MSC:
|
54D30 |
MSC:
|
54D65 |
MSC:
|
54E45 |
MSC:
|
54E50 |
MSC:
|
54E52 |
idZBL:
|
Zbl 0938.54007 |
idMR:
|
MR1485074 |
. |
Date available:
|
2009-01-08T18:36:05Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118951 |
. |
Reference:
|
[1] Alas O.T.: The Axiom of choice and two particular forms of Tychonoff theorem.Portugal. Math. 28 (1968), 75-76. MR 0281600 |
Reference:
|
[2] Banaschewski B.: Compactification and the axiom of choice.unpublished manuscript, 1979. |
Reference:
|
[3] Bentley H.L., Herrlich H.: Compactness and rings of continuous functions - without the axiom of choice.to appear. Zbl 0986.54029, MR 1722566 |
Reference:
|
[4] Bentley H.L., Herrlich H.: Countable choice and pseudometric spaces.to appear. Zbl 0922.03068, MR 1617460 |
Reference:
|
[5] Blass A.: A model without ultrafilters.Bull. Acad. Sci. Polon., Sér. Sci. Math. Astr. Phys. 25 (1977), 329-331. Zbl 0365.02054, MR 0476510 |
Reference:
|
[6] Comfort W.W.: A theorem of Stone-Čech type, and a theorem of Tychonoff type, without the axiom of choice; and their realcompact analogues.Fund. Math. 63 (1988), 97-110. MR 0236880 |
Reference:
|
[7] Good C., Tree I.J.: Continuing horrors of topology without choice.Topol. Appl. 63 (1995), 79-90. Zbl 0822.54001, MR 1328621 |
Reference:
|
[8] Goodstein R.L.: Existence in Mathematics.in: Logic and Foundations of Mathematics (eds. D. van Dalen et al.), Wolters-Noordhoff Publ. Co., 1968, pp.70-82. Zbl 0162.30901, MR 0247998 |
Reference:
|
[9] Halpern J.D., Lévy A.: The Boolean prime ideal theorem does not imply the axiom of choice.Proc. of Symposium Pure Math. of the AMS 13 (1971), Part I, 83-134. MR 0284328 |
Reference:
|
[10] Herrlich H.: Compactness and the Axiom of Choice.Appl. Categ. Structures 4 (1996), 1-14. Zbl 0881.54027, MR 1393958 |
Reference:
|
[11] Herrlich H.: An effective construction of a free ultrafilter.Papers on Gen. Topol. Appl. (eds. S. Andima et al.), Annals New York Acad Sci. 806 (1996), 201-206. MR 1429654 |
Reference:
|
[12] Herrlich H.: The Ascoli Theorem is equivalent to the Boolean Prime Ideal Theorem.to appear. Zbl 0880.54005, MR 1602169 |
Reference:
|
[13] Herrlich H.: The Ascoli Theorem is equivalent to the Axiom of Choice.to appear. |
Reference:
|
[14] Herrlich H., Steprāns J.: Maximal filters, continuity and choice principles.to appear in Quaestiones Math. 20 (1997). MR 1625478 |
Reference:
|
[15] Herrlich H., Strecker G.E.: When in $\Bbb N$ Lindelöf?.to appear in Comment. Math. Univ. Carolinae 38 (1997). MR 1485075 |
Reference:
|
[16] Hilbert D.: Über das Unendliche.Mathem. Annalen 95 (1926), 161-190. MR 1512272 |
Reference:
|
[17] Jaegermann M.: The Axiom of Choice and two definitions of continuity.Bull. Acad. Polon. Sci, Sér. Sci, Math., Astr. et Phys. 13 (1965), 699-704. Zbl 0252.02059, MR 0195711 |
Reference:
|
[18] Jech T.: Eine Bemerkung zum Auswahlaxiom.Časopis Pěst. Mat. 93 (1968), 30-31. Zbl 0167.27402, MR 0233706 |
Reference:
|
[19] Jech T.J.: The Axiom of Choice.North Holland, Amsterdam, 1973. Zbl 0259.02052, MR 0396271 |
Reference:
|
[20] Jensen R.B.: Independence of the Axiom of Dependent Choices from the Countable Axiom of Choice.J. Symb. Logic 31 (1966), 294. |
Reference:
|
[21] Kelley J.L.: The Tychonoff product theorem implies the axiom of choice.Fund. Math. 37 (1950), 75-76. Zbl 0039.28202, MR 0039982 |
Reference:
|
[22] Loś J., Ryll-Nardzewski C.: Effectiveness of the representation theory for Boolean algebras.Fund. Math. 41 (1955), 49-56. MR 0065527 |
Reference:
|
[23] Maddy P.: Believing the axioms I..J. Symb. Logic 53 (1988), 481-511. Zbl 0652.03033, MR 0947855 |
Reference:
|
[24] Moore G.H.: Zermelo's Axiom of Choice. Its Origins, Developments and Influence.Springer, New York, 1982. MR 0679315 |
Reference:
|
[25] Mycielski J.: Two remarks on Tychonoff's product theorem.Bull. Acad. Polon. Sci. Sér. Sci. Math., Astr. Phys. 12 (1964), 439-441. Zbl 0138.17703, MR 0215731 |
Reference:
|
[26] Pincus D.: Adding Dependent Choice to the Boolean Prime Ideal Theorem.Logic Colloq. 76 (1977), 547-565. MR 0480027 |
Reference:
|
[27] Rubin H., Rubin J.E.: Equivalents of the Axiom of Choice II..North Holland, Amsterdam, 1985. MR 0798475 |
Reference:
|
[28] Rubin H., Scott D.: Some topological theorems equivalent to the Boolean prime ideal theorem.Bull. Amer. Math. Soc. 60 (1954), 389. |
Reference:
|
[29] Sierpiñski W.: Sur le rôle de l'axiome de M. Zermelo dans l'Analyse moderne.Compt. Rendus Hebdomadaires des Sēances de l'Academie des Sciences, Paris 193 (1916), 688-691. |
Reference:
|
[30] Sierpiñski W.: L'axiome de M. Zermelo et son rôle dans la théorie des ensembles et l'analyse.Bull. Acad. Sci. Cracovie, Cl. Sci. Math., Sér. A (1918), 97-152. |
Reference:
|
[31] Douwen E.K.: Horrors of topology without AC: a nonnormal orderable space.Proc. Amer. Math. Soc. 95 (1985), 101-105. Zbl 0574.03039, MR 0796455 |
Reference:
|
[32] Ward L.E.: A weak Tychonoff theorem and the axiom of choice.Proc. Amer. Math. Soc. 13 (1962), 757-758. Zbl 0112.14301, MR 0186537 |
. |