Article
Keywords:
quasilinear elliptic; integral operators; fixed points theory
Summary:
The existence of decaying positive solutions in ${\Bbb R}_+$ of the equations $(E_\lambda )$ and $(E_\lambda^1)$ displayed below is considered. From the existence of such solutions for the subhomogeneous cases (i.e. $t^{1-p} F(r,tU,t|U'|) \searrow 0$ as $t \nearrow \infty $), a super-sub-solutions method (see \S\,2.2) enables us to obtain existence theorems for more general cases.
References:
                        
[1] Hardy G.H et al.: Inegalities. Cambridge Press (1934).
[3] Kawano N., Yanagida E., Yotsutani S.: 
Structure theorems for positive radial solutions to $ {div} (|Du|^{m-2} Du) + K(|x|)u^q =0$ in ${\Bbb R}^n$. J. Math. Soc. Japan 45 no. 4 (1993), 719-742. 
MR 1239344 | 
Zbl 0803.35040 
[4] Kusano T., Swanson C.A.: 
Radial entire solutions of a class of quasilinear elliptic equations. J.D.E. 83 (1990), 379-399. 
MR 1033194 | 
Zbl 0703.35060 
[5] Tadie: 
Weak and classical positive solutions of some elliptic equations in ${\Bbb R}^n$, $n\geq 3$: radially symmetric cases. Quart. J. Oxford 45 (1994), 397-406. 
MR 1295583 
[6] Tadie: 
Subhomogeneous and singular quasilinear Emden-type ODE. to appear. 
Zbl 1058.34505 
[7] Yasuhiro F., Kusano T., Akio O.: 
Symmetric positive entire solutions of second order quasilinear degenerate elliptic equations. Arch. Rat. Mech. Anal. 127 (1994), 231-254. 
MR 1288603 | 
Zbl 0807.35035 
[8] Yin Xi Huang: 
Decaying positive entire solutions of the p-Laplacian. Czech. Math. J. 45 no. 120 (1995), 205-220. 
MR 1331458