[1] Comfort W.W.: 
Topological groups. Handbook of Set-Theoretic Topology (K. Kunen and J. Vaughan, eds.), North-Holland, 1984, pp.1143-1263. 
MR 0776643 | 
Zbl 1071.54019[2] Comfort W.W.: 
Problems on topological groups and other homogeneous spaces. Open Problems in Topology (J. van Mill and G. M. Reed, eds.), North-Holland, 1990, pp.311-347. 
MR 1078657[3] Comfort W.W., Remus D.: 
Imposing pseudocompact group topologies on Abelian groups. Fundamenta Mathematica 142 (1993), 221-240. 
MR 1220550 | 
Zbl 0865.54035[4] Dikranjan D., Shakhmatov D.: 
Pseudocompact topologies on groups. Topology Proc. 17 (1992), 335-342. 
MR 1255816 | 
Zbl 0795.22001[5] van Douwen E.K.: 
The product of two countably compact topological groups. Trans. Amer. Math. Soc. 262 (1980), 417-427. 
MR 0586725 | 
Zbl 0453.54006[7] Hart K.P., van Mill J.: 
A countably compact $H$ such that $H\times H$ is not countably compact. Trans. Amer. Math. Soc. 323 (1991), 811-821. 
MR 0982236[8] Hajnal A., Juhász I.: 
A separable normal topological group need not be Lindelöf. General Topology Appl. 6 (1976), 199-205. 
MR 0431086[10] Robbie D., Svetlichny S.: 
An answer to A.D. Wallace's question about countably compact cancellative semigroups. Proc. Amer. Math. Soc. 124 (1996), 325-330. 
MR 1328373 | 
Zbl 0843.22001[11] Tkachenko M.G.: 
Countably compact and pseudocompact topologies on free Abelian groups. Izvestia VUZ. Matematika 34 (1990), 68-75. 
MR 1083312 | 
Zbl 0714.22001[12] Tomita A.H.: 
The Wallace Problem: a counterexample from $M A_{countable}$ and $p$-compactness. Canadian Math. Bull. 39 (1996), 4 486-498. 
MR 1426694[13] Tomita A.H.: 
On finite powers of countably compact groups. Comment. Math. Univ. Carolinae 37 (1996), 3 617-626. 
MR 1426926 | 
Zbl 0881.54022[14] Tomita A.H.: A group under $M A_{countable}$ whose square is countably compact but whose cube is not. to appear in Topology Appl.
[15] Tomita A.H.: Countable compactness and related properties in groups and semigroups: free Abelian groups and the Wallace Problem. Ph.D Thesis, York University, June 1995.
[16] Vaughan J.: 
Countably compact and sequentially compact spaces. Handbook of Set-Theoretic Topology (K. Kunen and J. Vaughan, eds.), North-Holland, 1984, pp.569-602. 
MR 0776631 | 
Zbl 0562.54031[17] Wallace A.D.: 
The structure of topological semigroups. Bull. Amer. Math. Soc. 61 (1955), 95-112. 
MR 0067907 | 
Zbl 0065.00802[18] Weiss W.: 
Versions of Martin's Axiom. Handbook of Set-Theoretic Topology (K. Kunen and J. Vaughan, eds.), North-Holland, 1984, pp.827-886. 
MR 0776638 | 
Zbl 0571.54005