Title:
|
DiPerna-Majda measures and uniform integrability (English) |
Author:
|
Kružík, Martin |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
39 |
Issue:
|
3 |
Year:
|
1998 |
Pages:
|
511-523 |
. |
Category:
|
math |
. |
Summary:
|
The purpose of this note is to discuss the relationship among Rosenthal's modulus of uniform integrability, Young measures and DiPerna-Majda measures. In particular, we give an explicit characterization of this modulus and state a criterion of the uniform integrability in terms of these measures. Further, we show applications to Fatou's lemma. (English) |
Keyword:
|
bounded sequences |
Keyword:
|
DiPerna-Majda measures |
Keyword:
|
Fatou's lemma |
Keyword:
|
relative sequential weak compactness |
Keyword:
|
uniform integrability |
Keyword:
|
Young measures |
MSC:
|
28A05 |
MSC:
|
28A20 |
MSC:
|
28A33 |
MSC:
|
40A30 |
idZBL:
|
Zbl 0970.49012 |
idMR:
|
MR1666786 |
. |
Date available:
|
2009-01-08T18:45:51Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119029 |
. |
Reference:
|
[1] Balder E.J.: On weak convergence implying strong convergence in $L_1$ spaces.Bull. Austral. Math. Soc. 33 (1986), 363-368. MR 0837481 |
Reference:
|
[2] Balder E.J.: On equivalence of strong and weak convergence in $L_1$-spaces under extreme point conditions.Israel J. Math. 75 (1991), 21-47. MR 1147289 |
Reference:
|
[3] Balder E.J.: On weak convergence implying strong convergence under extremal conditions.J. Math. Anal. Appl. 163 (1992), 147-156. Zbl 0768.46013, MR 1144712 |
Reference:
|
[4] Ball J.M.: A version of the fundamental theorem for Young measures.in: PDEs and Continuum Models of Phase Transition (M. Rascle, D. Serre, M. Slemrod, eds.), Lecture Notes in Physics, Vol. 344, Springer-Verlag, Berlin, 1989, pp.207-215. Zbl 0991.49500, MR 1036070 |
Reference:
|
[5] Ball J.M., Murat F.: Remarks on Chacon's biting lemma.Proc. Amer. Math. Soc. 107 (1989), 655-663. Zbl 0678.46023, MR 0984807 |
Reference:
|
[6] Berlioocchi H., Lasry J.M.: Intégrandes normales et mesures paramétrées en calcul des variations.Bull. Soc. Math. France 101 (1973), 129-184. MR 0344980 |
Reference:
|
[7] Bourgain J., Rosenthal H.P.: Martingales valued in certain subspaces of $L^1$.Israel J. Math. 37 (1980), 54-75. MR 0599302 |
Reference:
|
[8] Brooks J.K., Chacon R.V.: Continuity and compactness of measures.Adv. in Math. 37 (1980), 16-26. Zbl 0463.28003, MR 0585896 |
Reference:
|
[9] Castaing C.: Méthode de compacticité et de décomposition applications: minimisation, convergence des martingales, lemme de Fatou multivoque.Ann. Mat. Pura Appl. 164 (1993), 51-75. MR 1243948 |
Reference:
|
[10] Dacorogna B.: Weak Continuity and Weak Lower Semicontinuity of Non-Linear Functionals.Lecture Notes in Math., Vol. 922, Springer-Verlag, Berlin, 1982. MR 0658130 |
Reference:
|
[11] De la Vallée Poussin C.: Sur l'intégrale de Lebesgue.Trans. Amer. Math. Soc. 16 (1915), 435-501. MR 1501024 |
Reference:
|
[12] DiPerna R.J., Majda A.J.: Oscillations and concentrations in weak solutions of the incompressible fluid equations.Math. Physics 108 (1987), 667-689. Zbl 0626.35059, MR 0877643 |
Reference:
|
[13] Dunford N., Schwartz J.T.: Linear Operators.Part I, Interscience, New York, 1967. Zbl 0635.47003 |
Reference:
|
[14] Engelking R.: General Topology.$2^{nd}$ ed., PWN, Warszawa, 1985. Zbl 0684.54001 |
Reference:
|
[15] Evans L.C.: Weak Convergence Methods for Nonlinear Partial Differential Equations.A.M.S., Providence, 1990. Zbl 0698.35004, MR 1034481 |
Reference:
|
[16] Fonseca I., Müller S., Pedregal P.: Analysis of concentration and oscillation effects generated by gradients.preprint. MR 1617712 |
Reference:
|
[17] Kinderlehrer D., Pedregal P.: Weak convergence of integrands and the Young measure representation.SIAM J. Math. Anal. 23 (1992), 1-19. Zbl 0757.49014, MR 1145159 |
Reference:
|
[18] Kinderlehrer D., Pedregal P.: Gradient Young measures generated by sequences in Sobolev spaces.J. Geom. Anal. 4 (1994), 59-90. Zbl 0828.46031, MR 1274138 |
Reference:
|
[19] Klei H.-A., Miyara M.: Une extension du lemme de Fatou.Bull. Sci. Math. $2^{nd}$ serie 115 (1991), 211-221. Zbl 0734.28004, MR 1101024 |
Reference:
|
[20] Kružík M., Roubíček T.: Explicit characterization of $L^p$-Young measures.J. Math. Anal. Appl. 198 (1996), 830-843. MR 1377827 |
Reference:
|
[21] Kružík M., T. Roubíček T.: On the measures of DiPerna and Majda.Mathematica Bohemica 122 (1997), 383-399. MR 1489400 |
Reference:
|
[22] Piccinini L., Valadier M.: Uniform Integrability and Young measures.J. Math. Anal. Appl. 195 (1995), 428-439. Zbl 0930.28004, MR 1354553 |
Reference:
|
[23] Roubíček T.: Nonconcentrating generalized Young functionals.Comment. Math. Univ. Carolinae 38 (1997), 91-99. MR 1455472 |
Reference:
|
[24] Roubíček T.: Relaxation in Optimization Theory and Variational Calculus.W. de Gruyter, Berlin, 1997. MR 1458067 |
Reference:
|
[25] Saadoune M., Valadier M.: Extraction of a ``good'' sequence from a bounded sequence of integrable functions.J. Convex Anal. 2 (1994), 345-357. |
Reference:
|
[26] Schonbek M.E.: Convergence of solutions to nonlinear dispersive equations.Comm. Partial Diff. Equations 7 (1982), 959-1000. Zbl 0496.35058, MR 0668586 |
Reference:
|
[27] Slaby M.: Strong convergence of vector valued pramarts and submarts.Probability and Math. Stat. 5 (1985), 187-196. MR 0816695 |
Reference:
|
[28] Tartar L.: Compensated compactness and applications to partial differential equations.in: Nonlinear Analysis and Mechanics (R.J. Knops, ed.), Heriott-Watt Symposium IV, Pitman Res. Notes in Math., Vol. 39, San Francisco, 1979. Zbl 0437.35004, MR 0584398 |
Reference:
|
[29] Valadier M.: Young measures.in: Methods of Nonconvex Analysis (A. Cellina, ed.), Lecture Notes in Math., Vol. 1446, Springer-Verlag, Berlin, 1990, 152-188. Zbl 1067.28001, MR 1079763 |
Reference:
|
[30] Warga J.: Optimal Control of Differential and Functional Equations.Academic Press, New York, 1972. Zbl 0253.49001, MR 0372708 |
Reference:
|
[31] Young L.C.: Generalized curves and the existence of an attained absolute minimum in the calculus of variations.Comptes Rendus de la Société des Sciences et des Lettres de Varsovie Classe III 30 (1937), 212-234. Zbl 0019.21901 |
Reference:
|
[32] Young L.C.: Lectures on the Calculus of Variations and Optimal Control Theory.W.B. Saunders, Philadelphia, 1969. Zbl 0289.49003, MR 0259704 |
. |