Previous |  Up |  Next

Article

Title: DiPerna-Majda measures and uniform integrability (English)
Author: Kružík, Martin
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 39
Issue: 3
Year: 1998
Pages: 511-523
.
Category: math
.
Summary: The purpose of this note is to discuss the relationship among Rosenthal's modulus of uniform integrability, Young measures and DiPerna-Majda measures. In particular, we give an explicit characterization of this modulus and state a criterion of the uniform integrability in terms of these measures. Further, we show applications to Fatou's lemma. (English)
Keyword: bounded sequences
Keyword: DiPerna-Majda measures
Keyword: Fatou's lemma
Keyword: relative sequential weak compactness
Keyword: uniform integrability
Keyword: Young measures
MSC: 28A05
MSC: 28A20
MSC: 28A33
MSC: 40A30
idZBL: Zbl 0970.49012
idMR: MR1666786
.
Date available: 2009-01-08T18:45:51Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119029
.
Reference: [1] Balder E.J.: On weak convergence implying strong convergence in $L_1$ spaces.Bull. Austral. Math. Soc. 33 (1986), 363-368. MR 0837481
Reference: [2] Balder E.J.: On equivalence of strong and weak convergence in $L_1$-spaces under extreme point conditions.Israel J. Math. 75 (1991), 21-47. MR 1147289
Reference: [3] Balder E.J.: On weak convergence implying strong convergence under extremal conditions.J. Math. Anal. Appl. 163 (1992), 147-156. Zbl 0768.46013, MR 1144712
Reference: [4] Ball J.M.: A version of the fundamental theorem for Young measures.in: PDEs and Continuum Models of Phase Transition (M. Rascle, D. Serre, M. Slemrod, eds.), Lecture Notes in Physics, Vol. 344, Springer-Verlag, Berlin, 1989, pp.207-215. Zbl 0991.49500, MR 1036070
Reference: [5] Ball J.M., Murat F.: Remarks on Chacon's biting lemma.Proc. Amer. Math. Soc. 107 (1989), 655-663. Zbl 0678.46023, MR 0984807
Reference: [6] Berlioocchi H., Lasry J.M.: Intégrandes normales et mesures paramétrées en calcul des variations.Bull. Soc. Math. France 101 (1973), 129-184. MR 0344980
Reference: [7] Bourgain J., Rosenthal H.P.: Martingales valued in certain subspaces of $L^1$.Israel J. Math. 37 (1980), 54-75. MR 0599302
Reference: [8] Brooks J.K., Chacon R.V.: Continuity and compactness of measures.Adv. in Math. 37 (1980), 16-26. Zbl 0463.28003, MR 0585896
Reference: [9] Castaing C.: Méthode de compacticité et de décomposition applications: minimisation, convergence des martingales, lemme de Fatou multivoque.Ann. Mat. Pura Appl. 164 (1993), 51-75. MR 1243948
Reference: [10] Dacorogna B.: Weak Continuity and Weak Lower Semicontinuity of Non-Linear Functionals.Lecture Notes in Math., Vol. 922, Springer-Verlag, Berlin, 1982. MR 0658130
Reference: [11] De la Vallée Poussin C.: Sur l'intégrale de Lebesgue.Trans. Amer. Math. Soc. 16 (1915), 435-501. MR 1501024
Reference: [12] DiPerna R.J., Majda A.J.: Oscillations and concentrations in weak solutions of the incompressible fluid equations.Math. Physics 108 (1987), 667-689. Zbl 0626.35059, MR 0877643
Reference: [13] Dunford N., Schwartz J.T.: Linear Operators.Part I, Interscience, New York, 1967. Zbl 0635.47003
Reference: [14] Engelking R.: General Topology.$2^{nd}$ ed., PWN, Warszawa, 1985. Zbl 0684.54001
Reference: [15] Evans L.C.: Weak Convergence Methods for Nonlinear Partial Differential Equations.A.M.S., Providence, 1990. Zbl 0698.35004, MR 1034481
Reference: [16] Fonseca I., Müller S., Pedregal P.: Analysis of concentration and oscillation effects generated by gradients.preprint. MR 1617712
Reference: [17] Kinderlehrer D., Pedregal P.: Weak convergence of integrands and the Young measure representation.SIAM J. Math. Anal. 23 (1992), 1-19. Zbl 0757.49014, MR 1145159
Reference: [18] Kinderlehrer D., Pedregal P.: Gradient Young measures generated by sequences in Sobolev spaces.J. Geom. Anal. 4 (1994), 59-90. Zbl 0828.46031, MR 1274138
Reference: [19] Klei H.-A., Miyara M.: Une extension du lemme de Fatou.Bull. Sci. Math. $2^{nd}$ serie 115 (1991), 211-221. Zbl 0734.28004, MR 1101024
Reference: [20] Kružík M., Roubíček T.: Explicit characterization of $L^p$-Young measures.J. Math. Anal. Appl. 198 (1996), 830-843. MR 1377827
Reference: [21] Kružík M., T. Roubíček T.: On the measures of DiPerna and Majda.Mathematica Bohemica 122 (1997), 383-399. MR 1489400
Reference: [22] Piccinini L., Valadier M.: Uniform Integrability and Young measures.J. Math. Anal. Appl. 195 (1995), 428-439. Zbl 0930.28004, MR 1354553
Reference: [23] Roubíček T.: Nonconcentrating generalized Young functionals.Comment. Math. Univ. Carolinae 38 (1997), 91-99. MR 1455472
Reference: [24] Roubíček T.: Relaxation in Optimization Theory and Variational Calculus.W. de Gruyter, Berlin, 1997. MR 1458067
Reference: [25] Saadoune M., Valadier M.: Extraction of a ``good'' sequence from a bounded sequence of integrable functions.J. Convex Anal. 2 (1994), 345-357.
Reference: [26] Schonbek M.E.: Convergence of solutions to nonlinear dispersive equations.Comm. Partial Diff. Equations 7 (1982), 959-1000. Zbl 0496.35058, MR 0668586
Reference: [27] Slaby M.: Strong convergence of vector valued pramarts and submarts.Probability and Math. Stat. 5 (1985), 187-196. MR 0816695
Reference: [28] Tartar L.: Compensated compactness and applications to partial differential equations.in: Nonlinear Analysis and Mechanics (R.J. Knops, ed.), Heriott-Watt Symposium IV, Pitman Res. Notes in Math., Vol. 39, San Francisco, 1979. Zbl 0437.35004, MR 0584398
Reference: [29] Valadier M.: Young measures.in: Methods of Nonconvex Analysis (A. Cellina, ed.), Lecture Notes in Math., Vol. 1446, Springer-Verlag, Berlin, 1990, 152-188. Zbl 1067.28001, MR 1079763
Reference: [30] Warga J.: Optimal Control of Differential and Functional Equations.Academic Press, New York, 1972. Zbl 0253.49001, MR 0372708
Reference: [31] Young L.C.: Generalized curves and the existence of an attained absolute minimum in the calculus of variations.Comptes Rendus de la Société des Sciences et des Lettres de Varsovie Classe III 30 (1937), 212-234. Zbl 0019.21901
Reference: [32] Young L.C.: Lectures on the Calculus of Variations and Optimal Control Theory.W.B. Saunders, Philadelphia, 1969. Zbl 0289.49003, MR 0259704
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_39-1998-3_8.pdf 249.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo