Previous |  Up |  Next

Article

Title: Linking the closure and orthogonality properties of perfect morphisms in a category (English)
Author: Holgate, David
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 39
Issue: 3
Year: 1998
Pages: 587-607
.
Category: math
.
Summary: We define perfect morphisms to be those which are the pullback of their image under a given endofunctor. The interplay of these morphisms with other generalisations of perfect maps is investigated. In particular, closure operator theory is used to link closure and ortho\-go\-na\-lity properties of such morphisms. A number of detailed examples are given. (English)
Keyword: perfect morphism
Keyword: (pullback) closure operator
Keyword: factorisation theory
Keyword: orthogonal morphisms
MSC: 18A20
MSC: 18B30
MSC: 54B30
MSC: 54C10
idZBL: Zbl 0970.18002
idMR: MR1666810
.
Date available: 2009-01-08T18:46:40Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119036
.
Reference: [1] Adámek J., Herrlich H., Strecker G.E.: Abstract and Concrete Categories.Pure and Applied Mathematics, John Wiley and Sons, Inc., New York, 1990. MR 1051419
Reference: [2] Blaszczyk A., Mioduszewski J.: On factorization of maps through $\tau X$.Colloq. Math. 23 (1971), 45-52. Zbl 0222.54032, MR 0305331
Reference: [3] Bourbaki N.: General Topology, Part I.ADIWES International Series in Mathematics, Addison-Wesley Publishing Company, Reading, 1966.
Reference: [4] Brown R.: On sequentially proper maps and sequential compactification.J. London Math. Soc. (2) 7 (1973), 515-522. MR 0331307
Reference: [5] Brümmer G.C.L., Giuli E.: Results on perfectness.unpublished manuscript, 1993.
Reference: [6] Clementino M.M., Giuli E., Tholen W.: Topology in a Category: Compactness.Port. Math., to appear. Zbl 0877.18002, MR 1432147
Reference: [7] Dikranjan D.: On a generalization of perfect maps.unpublished manuscript, 1989. Zbl 0978.54009
Reference: [8] Dikranjan D., Giuli E.: Closure operators I.Topology Appl. 27 (1987), 129-143. Zbl 0634.54008, MR 0911687
Reference: [9] Dikranjan D., Giuli E. $C$-perfect morphisms and $C$-compactness: unpublished manuscript, 1991..
Reference: [10] Dikranjan D., Tholen W.: Categorical structure of closure operators.Kluwer Academic Publishers, 1995. Zbl 0853.18002, MR 1368854
Reference: [11] Engelking R.: General Topology - Revised and completed edition.Heldermann Verlag, Berlin, 1989. MR 1039321
Reference: [12] Fedeli A.: On compact and $ Top_{0}$-compact sobrification.Rend. Circ. Mat. Palermo Suppl. II 29 (1992), 399-405. MR 1197182
Reference: [13] Franklin S.P.: On epireflective hulls II.Notes for Meerut University Summer Institute on Topology, 1971.
Reference: [14] Hager A.W.: Perfect maps and epireflective hulls.Canadian J. Math. 27 (1975), 11-24. MR 0365499
Reference: [15] Henriksen M., Isbell J.R.: Some properties of compactifications.Duke Math. J. 25 (1958), 83-106. Zbl 0081.38604, MR 0096196
Reference: [16] Herrlich H.: A generalization of perfect maps.General Topology and its Relation to Modern Analysis and Algebra (Conference Proceedings, Prague, 1971); Academia, Prague, 1972, pp.187-191. Zbl 0329.18009, MR 0362192
Reference: [17] Herrlich H.: Perfect subcategories and factorizations.Colloquia Mathematica Societatis János Bolyai 8 (1974), 387-403. Zbl 0335.54011, MR 0362193
Reference: [18] Herrlich H., Salicrup G., Strecker G.E.: Factorisations, denseness, separation and relatively compact objects.Topology Appl. 27 (1987), 157-169. MR 0911689
Reference: [19] Holgate D.: The pullback closure, perfect morphisms and completions.PhD. Thesis, University of Cape Town, 1995.
Reference: [20] Holgate D.: The pullback closure operator and generalisations of perfectness.Applied Categorical Structures 4 (1996), 107-120. Zbl 0912.18002, MR 1393967
Reference: [21] Hušek M., de Vries J.: Preservation of products by functors close to reflectors.Topology Appl. 27 (1987), 171-189. MR 0911690
Reference: [22] Manes E.G.: Compact Hausdorff objects.Topology Appl. 4 (1974), 341-360. Zbl 0289.54003, MR 0367901
Reference: [23] Nakagawa R.: Relations between two reflections.Science Reports T.K.D. Sect. A 12 (324) (1974), 80-88. Zbl 0282.18007, MR 0341408
Reference: [24] Nel L.D.: Development classes: An approach to perfectness, reflectiveness and extension problems.TOPO-72 General Topology and its Applications (Conference Proceedings, Pittsburgh, 1972). Lecture Notes in Mathematics 378, Springer Verlag, Berlin, 1974, pp.322-340. Zbl 0294.54011, MR 0367894
Reference: [25] Strecker G.: Epireflection operators vs perfect morphisms and closed classes of epimorphisms.Bull. Austral. Math. Society 7 (1972), 359-366. Zbl 0242.18004, MR 0322003
Reference: [26] Strecker G.: On characterizations of perfect morphisms and epireflective hulls.TOPO-72 General Topology and its Applications (Conference Proceedings, Pittsburgh, 1972). Lecture Notes in Mathematics 378, Springer Verlag, Berlin, 1974, pp.468-500. Zbl 0289.18004, MR 0365457
Reference: [27] Strecker G.: Perfect sources.Proc. Conf. Categorical Topology (Mannheim 1975), Lecture Notes in Mathematics 540, Springer-Verlag, Berlin, 1976, pp.605-624. Zbl 0338.54007, MR 0451192
Reference: [28] Tsai J.H.: On $E$-compact spaces and generalizations of perfect mappings.Pacific J. Math. 46 (1973), 275-282. Zbl 0263.54004, MR 0324658
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_39-1998-3_15.pdf 323.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo