Previous |  Up |  Next

Article

Title: On Besov spaces and absolute convergence of the Fourier transform on Heisenberg groups (English)
Author: Skrzypczak, Leszek
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 39
Issue: 4
Year: 1998
Pages: 755-763
.
Category: math
.
Summary: In this paper the absolute convergence of the group Fourier transform for the Heisenberg group is investigated. It is proved that the Fourier transform of functions belonging to certain Besov spaces is absolutely convergent. The function spaces are defined in terms of the heat semigroup of the full Laplacian of the Heisenberg group. (English)
Keyword: Besov spaces
Keyword: Heisenberg groups
Keyword: group Fourier transform
MSC: 22E25
MSC: 43A30
MSC: 43A80
MSC: 46E35
idZBL: Zbl 1060.46512
idMR: MR1715464
.
Date available: 2009-01-08T18:48:18Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119050
.
Reference: [1] Bernstein S.: Sur la convergence absolute des séries trigonométriques.C.R.A.S. Paris 158 (1994), 1661-1664.
Reference: [2] Coulhon T., Saloff-Coste L.: Semi-groupes d'opérateurs et espaces fonctionels sur les groupes de Lie.J. Approx. Theory 65 (1991), 176-198. MR 1104158
Reference: [3] Folland G.: Harmonic analysis in phase space.Ann. Math. Stud. 112, Princeton Univ. Press, 1989. Zbl 0682.43001, MR 0983366
Reference: [4] Gaudry G.I., Meda S., Pini R.: A heat semigroup version of Bernstein's theorem on Lie groups.Monatshefte Math. 110 (1990), 101-115. Zbl 0719.43008, MR 1076325
Reference: [5] Geller D.: Fourier analysis on the Heisenberg group.J. Funct. Anal. 36 (1980), 205-254. Zbl 0433.43008, MR 0569254
Reference: [6] Geller D.: Spherical harmonics, the Weyl transform and the Fourier transform on the Heisenberg group.Canad. J. Math. 36 (1984), 615-684. Zbl 0596.46034, MR 0756538
Reference: [7] Herz C.: Lipschitz spaces and Bernstein's theorem on absolutely convergent Fourier transform.J. Math. Mechanics 18 (1968), 283-324. MR 0438109
Reference: [8] Inglis I.R.: Bernstein's theorem and the Fourier algebra of the Heisenberg group.Boll. Un. Mat. Ital. 6 (1983), 39-46. Zbl 0528.43008, MR 0694742
Reference: [9] Saka K.: Besov spaces and Sobolev spaces on a nilpotent Lie group.Tôhoku Math. J. 31 (1979), 383-437. Zbl 0429.43004, MR 0558675
Reference: [10] Skrzypczak L.: Atomic decompositions on Riemannian manifolds with bounded geometry.Forum Math. 10 (1998), 19-38. MR 1490136
Reference: [11] Skrzypczak L.: Heat and harmonic extensions for function spaces of Hardy-Sobolev-Besov type on symmetric spaces and Lie groups.J. Approx. Theory, to appear. Zbl 0918.43007, MR 1659396
Reference: [12] Strichartz R.S.: Analysis of the Laplacian on a complete Riemannian manifold.J. Funct. Anal. 52 (1983), 48-79. Zbl 0515.58037, MR 0705991
Reference: [13] Thangavelu S.: On Paley-Wiener theorems for the Heisenberg group.J. Funct. Anal. 115 (1993), 24-44. Zbl 0793.43006, MR 1228140
Reference: [14] Triebel H.: Function spaces on Lie Groups, the Riemannian approach.J. London Math. Soc. 35 (1987), 327-338. Zbl 0587.46036, MR 0881521
Reference: [15] Triebel H.: Theory of Function Spaces II.Birkhäuser Verlag, 1992. Zbl 0763.46025, MR 1163193
Reference: [16] Varopoulos N.Th., Saloff-Coste L., Coulhon T.: Analysis and Geometry on Groups.Cambridge Univ. Press, 1992. MR 1218884
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_39-1998-4_11.pdf 214.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo