Previous |  Up |  Next

Article

Title: Some results on sequentially compact extensions (English)
Author: Vipera, M. Cristina
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 39
Issue: 4
Year: 1998
Pages: 819-831
.
Category: math
.
Summary: The class of Hausdorff spaces (or of Tychonoff spaces) which admit a Hausdorff (respectively Tychonoff) sequentially compact extension has not been characterized. We give some new conditions, in particular, we prove that every Tychonoff locally sequentially compact space has a Tychonoff one-point sequentially compact extension. We also give some results about extension of functions and about lattice properties of the family of all minimal sequentially compact extensions of a given space. (English)
Keyword: sequentially compact extension
Keyword: locally sequentially compact space
Keyword: extension of functions
MSC: 54C20
MSC: 54D35
MSC: 54D80
idZBL: Zbl 1060.54507
idMR: MR1715470
.
Date available: 2009-01-08T18:49:00Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119056
.
Reference: [CFV] Caterino A., Faulkner G.D., Vipera M.C.: Two applications of singular sets to the theory of compactifications.Rend. Ist. Mat. Univ. Trieste 21 (1989), 248-258. Zbl 0772.54018, MR 1154977
Reference: [CG] Caterino A., Guazzone S.: Extensions of unbounded topological spaces.to appear. Zbl 0977.54021, MR 1675263
Reference: [vD] Van Douwen E.K.: The integers and topology.in Handbook of Set Theoretic Topology, North Holland, 1984. Zbl 0561.54004, MR 0776622
Reference: [E] Engelking R.: General Topology.Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [FV] Faulkner G.D., Vipera M.C.: Sequentially compact extensions.Questions Answers Gen. Topology 14 (1996), 196-207. Zbl 0865.54021, MR 1403345
Reference: [GJ] Gillman L., Jerison M.: Rings of Continuous functions.Van Nostrand, 1960. Zbl 0327.46040, MR 0116199
Reference: [H] Hu S.-T.: Boundedness in a topological space.J. Math. Pures Appl. 28 (1949), 287-320. Zbl 0041.31602, MR 0033527
Reference: [J] Juhász I.: Variation on tightness.Studia Sci. Math. Hungar. 24 (1989), 58-61.
Reference: [K] Kato A.: Various countably-compact-ifications and their applications.Gen. Top. Appl. 8 (1978), 27-46. Zbl 0372.54025, MR 0464167
Reference: [L] Loeb P.A.: A minimal compactification for extending continuous functions.Proc. Amer. Math. Soc. 18 (1967), 282-283. Zbl 0146.44503, MR 0216468
Reference: [M] Morita K.: Countably-compactifiable spaces.Sci. Rep. Tokyo Kyoiku Daigaku, Sec. A 12 (1973), 7-15. Zbl 0277.54024, MR 0370507
Reference: [N] Nogura N.: Countably compact extensions of topological spaces.Topology Appl. 15 (1983), 65-69. Zbl 0496.54021, MR 0676967
Reference: [NV] Nyikos P.J., Vaughan J.E.: The Scarborough-Stone problem for Hausdorff spaces.Topology Appl. 44 (1992), 309-316. Zbl 0758.54010, MR 1173267
Reference: [S] Simon P.: Product of sequentially compact spaces.Proc. of the Eleventh International Conference of Topology, Trieste 6-11 September, 1993, Rendic. Ist. Mat. Univ. Trieste 25(1-2) (1993), 447-450. MR 1346339
Reference: [T] Tkachuk V.V.: Almost Lindelöf and locally Lindelöf spaces.Izvestiya VUZ Matematika 32 (1988), 84-88. Zbl 0666.54014, MR 0941256
Reference: [V] Vaughan J.E.: Countably compact and sequentially compact spaces.in Handbook of Set Theoretic Topology, North Holland, 1984. Zbl 0562.54031, MR 0776631
Reference: [W] Whyburn G.T.: A unified space for mappings.Trans. Amer. Math. Soc. 74 (1953), 344-350. Zbl 0053.12303, MR 0052762
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_39-1998-4_17.pdf 243.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo