Previous |  Up |  Next

Article

Title: Existence of mild solutions on semiinfinite interval for first order differential equation with nonlocal condition (English)
Author: Benchohra, M.
Author: Ntouyas, S. K.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 41
Issue: 3
Year: 2000
Pages: 485-491
.
Category: math
.
Summary: In this paper we investigate the existence of mild solutions defined on a semiinfinite interval for initial value problems for a differential equation with a nonlocal condition. The results is based on the Schauder-Tychonoff fixed point theorem and rely on a priori bounds on solutions. (English)
Keyword: initial value problems
Keyword: mild solution
Keyword: semiinfinite interval
Keyword: nonlocal condition
Keyword: fixed point
MSC: 34A60
MSC: 34G20
MSC: 35R10
MSC: 47H20
idZBL: Zbl 1045.34036
idMR: MR1795080
.
Date available: 2009-01-08T19:04:24Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119184
.
Reference: [1] Balachandran K., Ilamaran S.: Existence and uniqueness of mild solutions of a semilinear evolution equation with nonlocal conditions.Indian J. Pure Appl. Math. 25 (1994), 411-418. MR 1272813
Reference: [2] Balachandran K., Chandrasekaran M.: Existence of solutions of nonlinear integrodifferential equation with nonlocal conditions.J. Appl. Math. Stoch. Anal. 10 (1996), 279-288. MR 1468123
Reference: [3] Balachandran K., Chandrasekaran M.: Nonlocal Cauchy problem for quasilinear integrodifferential equation in Banach spaces.Dynam. Systems Appl. 8 (1999), 35-44. Zbl 0924.34056, MR 1669065
Reference: [4] Balachandran K., Chandrasekaran M.: Existence of solutions of a delay differential equation with nonlocal condition.Indian J. Pure Appl. Math. 27 (1996), 443-449. Zbl 0854.34065, MR 1387239
Reference: [5] Byszewski L.: Existence and uniqueness of solutions of semilinear evolution nonlocal Cauchy problem.Zeszyty Nauk. Politech. Rzeszowskiej Mat. Fiz. 18 (1993), 109-112. MR 1274697
Reference: [6] Byszewski L.: Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem.J. Math. Anal. Appl. 162 (1991), 494-505. Zbl 0748.34040, MR 1137634
Reference: [7] Corduneanu C.: Integral Equations and Applications.Cambridge Univ. Press New York (1990). MR 1109491
Reference: [8] Dauer J.P., Balachandran K.: Existence of solutions for an integrodifferential equation with nonlocal condition in Banach spaces.Libertas Math. 16 (1996), 133-143. Zbl 0862.45016, MR 1412536
Reference: [9] Dugundji J., Granas A.: Fixed Point Theory.Monografie Mat., PWN, Warsaw, 1982. Zbl 1025.47002, MR 0660439
Reference: [10] Goldstein J.A.: Semigroups of Linear Operators and Applications.Oxford New York (1985). Zbl 0592.47034, MR 0790497
Reference: [11] Ntouyas S.K., Tsamatos P.Ch.: Global existence for semilinear evolution equations with nonlocal conditions.J. Math. Anal. Appl. 210 (1997), 679-687. Zbl 0884.34069, MR 1453198
Reference: [12] Ntouyas S.K., Tsamatos P.Ch.: Global existence for semilinear evolution integrodifferential equations with delay and nonlocal conditions.Appl. Anal. 64 (1997), 99-105. Zbl 0874.35126, MR 1460074
Reference: [13] Yosida K.: Functional Analysis.Springer-Verlag Berlin (1980). Zbl 0435.46002, MR 0617913
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_41-2000-3_7.pdf 189.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo