Previous |  Up |  Next

Article

Keywords:
transfinite dimension
Summary:
In this paper we study the behavior of the (transfinite) small inductive dimension $(trind)$ $ind$ on finite products of topological spaces. In particular we essentially improve Toulmin's estimation [T] of $trind$ for Cartesian products.
References:
[1] Basmanov V.N.: On inductive dimensions of products of spaces. Moscow Univ. Math. Bull. 36 (1981), 1 19-22. MR 0613119
[2] Chatyrko V.A.: Ordinal products of topological spaces. Fund. Math. 144 (1994), 95-117. MR 1273690 | Zbl 0809.54027
[3] Chatyrko V.A.: On finite sum theorems for transfinite inductive dimensions. Fund. Math., to appear. MR 1734819 | Zbl 0938.54031
[4] Engelking R.: Theory of Dimensions, Finite and Infinite. Heldermann Verlag, Lemgo, 1995. MR 1363947 | Zbl 0872.54002
[5] Filippov V.V.: On the inductive dimension of the product of bicompacta. Soviet Math. Dokl. 13 (1972), 250-254. Zbl 0243.54032
[6] Hessenberg G.: Grundbegriffe der Mengenlehre. Göttingen, 1906.
[7] Lifanov I.K.: On the dimension of the product of one-dimensional bicompacta. Soviet Math. Dokl. 9 (1968), 648-651.
[8] Malyhin D.V.: Some properties of topological products (in Russian). Moscow State University, Dissertation, 1999.
[9] Pasynkov B.A.: On inductive dimensions. Soviet Math. Dokl. 10 (1969), 1402-1406. MR 0254821 | Zbl 0205.52803
[10] Toulmin G.H.: Shuffling ordinals and transfinite dimension. Proc. London Math. Soc. 4 (1954), 177-195. MR 0065907 | Zbl 0055.41406
[11] Vinogradov R.N.: On transfinite dimension. Moscow Univ. Math. Bull. 48 (1993), 5 15-17. MR 1355765
[12] Zarelua A.V.: On a theorem of Hurewicz. Amer. Math. Soc. Transl. 55 (1966), 2 141-152.
Partner of
EuDML logo