Previous |  Up |  Next

Article

Title: Cauchy-Neumann problem for a class of nondiagonal parabolic systems with quadratic growth nonlinearities I. On the continuability of smooth solutions (English)
Author: Arkhipova, A.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 41
Issue: 4
Year: 2000
Pages: 693-718
.
Category: math
.
Summary: A class of nonlinear parabolic systems with quadratic nonlinearities in the gradient (the case of two spatial variables) is considered. It is assumed that the elliptic operator of the system has a variational structure. The behavior of a smooth on a time interval $[0,T)$ solution to the Cauchy-Neumann problem is studied. For the situation when the ``local energies'' of the solution are uniformly bounded on $[0,T)$, smooth extendibility of the solution up to $t=T$ is proved. In the case when $[0,T)$ defines the maximal interval of the existence of a smooth solution, the singular set at the moment $t=T$ is described. (English)
Keyword: boundary value problem
Keyword: nonlinear parabolic systems
Keyword: solvability
MSC: 35B60
MSC: 35D05
MSC: 35J65
MSC: 35K50
MSC: 35K55
idZBL: Zbl 1046.35047
idMR: MR1800172
.
Date available: 2009-01-08T19:06:34Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119203
.
Related article: http://dml.cz/handle/10338.dmlcz/119223
.
Reference: [1] Arkhipova A.: Global solvability of the Cauchy-Dirichlet Problem for nondiagonal parabolic systems with variational structure in the case of two spatial variables.Probl. Mat. Anal., no. 16, S.-Petersburg Univ., S.-Petersburg (1997), pp.3-40; English transl.: J. Math. Sci. 92 (1998), no. 6, 4231-4255. Zbl 0953.35059, MR 1668390
Reference: [2] Arkhipova A.: Local and global in time solvability of the Cauchy-Dirichlet problem to a class of nonlinear nondiagonal parabolic systems.Algebra & Analysis 11 6 (1999), 81-119 (Russian). MR 1746069
Reference: [3] Struwe M.: On the evolution of harmonic mappings of Riemannian surfaces.Comment. Math. Helv. 60 (1985), 558-581. Zbl 0595.58013, MR 0826871
Reference: [4] Ladyzhenskaja O.A., Solonnikov V.A., Uraltseva N.N.: Linear and Quasilinear Equations of Parabolic Type.Amer. Math. Society, Providence, 1968.
Reference: [5] Giaquinta M., Modica G.: Local existence for quasilinear parabolic systems under non- linear boundary conditions.Ann. Mat. Pura Appl. 149 (1987), 41-59. MR 0932775
Reference: [6] Da Prato G.: Spazi ${\Cal L}^{p, \tau}(Ømega, \delta)$ e loro proprieta.Annali di Matem. LXIX (1965), 383-392. Zbl 0145.16207
Reference: [7] Campanato S.: Equazioni paraboliche del secondo ordine e spazi ${\Cal L}^{2, \delta} (Ømega, \delta)$..Ann. Mat. Pura Appl. 73 (1966), ser.4, 55-102. MR 0213737
Reference: [8] Arkhipova A.: On the Neumann problem for nonlinear elliptic systems with quadratic nonlinearity.St. Petersburg Math. J. 8 (1997), no. 5, 1-17; in Russian: Algebra & Analysis, St. Petersburg 8 (1996), no. 5. Zbl 0872.35020, MR 1428990
Reference: [9] Giaquinta M.: Multiple integrals in the calculus of variations and nonlinear elliptic systems.Ann. Math. Stud. 105, Princeton Univ. Press, Princeton, N.J., 1983. Zbl 0516.49003, MR 0717034
Reference: [10] Nečas J., Šverák V.: On regularity of solutions of nonlinear parabolic systems.Ann. Scuola Norm. Sup. Pisa 18 ser. IV, F.1 (1991), 1-11. MR 1118218
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_41-2000-4_5.pdf 337.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo