Previous |  Up |  Next

Article

Title: A note on copies of $c_0$ in spaces of weak* measurable functions (English)
Author: Ferrando, J. C.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 41
Issue: 4
Year: 2000
Pages: 761-764
.
Category: math
.
Summary: If $(\Omega,\Sigma,\mu)$ is a finite measure space and $X$ a Banach space, in this note we show that $L_{w^{\ast}}^{1}(\mu,X^{\ast})$, the Banach space of all classes of weak* equivalent $X^{\ast}$-valued weak* measurable functions $f$ defined on $\Omega$ such that $\|f(\omega )\| \leq g(\omega )$ a.e. for some $g\in L_{1}(\mu )$ equipped with its usual norm, contains a copy of $c_{0}$ if and only if $X^{\ast}$ contains a copy of $c_{0}$. (English)
Keyword: weak* measurable function
Keyword: copy of $c_0$
Keyword: copy of $\ell_1$
MSC: 46B20
MSC: 46E40
MSC: 46G10
idZBL: Zbl 1050.46512
idMR: MR1800168
.
Date available: 2009-01-08T19:07:03Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119207
.
Reference: [1] Bourgain J.: An averaging result for $c_{0}$-sequences.Bull. Soc. Math. Belg. 30 (1978), 83-87. Zbl 0417.46019, MR 0549653
Reference: [2] Cembranos P., Mendoza J.: Banach Spaces of Vector-Valued Functions.Lecture Notes in Math. 1676, Springer, 1997. Zbl 0902.46017, MR 1489231
Reference: [3] Diestel J.: Sequences and Series in Banach Spaces.GTM 92, Springer-Verlag, 1984. MR 0737004
Reference: [4] Dunford N., Schwartz J.T.: Linear Operators. Part I.John Wiley, Wiley Interscience, New York, 1988. Zbl 0635.47001, MR 1009162
Reference: [5] Hoffmann-Jørgensen J.: Sums of independent Banach space valued random variables.Studia Math. 52 (1974), 159-186. MR 0356155
Reference: [6] Hu Z., Lin B.-L.: Extremal structure of the unit ball of $L^p(\mu,X)$.J. Math. Anal. Appl. 200 (1996), 567-590. MR 1393102
Reference: [7] Kwapień S.: On Banach spaces containing $c_{0}$.Studia Math. 52 (1974), 187-188. MR 0356156
Reference: [8] Mendoza J.: Complemented copies of $\ell_{1}$ in $L_p(\mu,X)$.Math. Proc. Camb. Phil. Soc. 111 (1992), 531-534. MR 1151329
Reference: [9] Saab E., Saab P.: A stability property of a class of Banach spaces not containing a complemented copy of $\ell_{1}$.Proc. Amer. Math. Soc. 84 (1982), 44-46. MR 0633274
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_41-2000-4_9.pdf 183.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo