Article
Keywords:
harmonic morphisms; Kelvin transform; Weinstein operator
Summary:
The note develops results from [5] where an invariance under the Möbius transform mapping the upper halfplane onto itself of the Weinstein operator $W_k:=\Delta+\frac k{x_n}\frac{\partial}{\partial x_n}$ on $\Bbb R^n$ is proved. In this note there is shown that in the cases $k\neq 0$, $k\neq 2$ no other transforms of this kind exist and for case $k=2$, all such transforms are described.
References:
[1] Kellogg O.D.:
Foundation of Potential Theory. Springer-Verlag, Berlin, 1929 (reissued 1967).
MR 0222317
[2] Leutwiler H.:
On the Appell transformation. in: Potential Theory (ed. J. Král et al.), Plenum Press, New York, 1987, pp.215-222.
MR 0986298 |
Zbl 0685.35006
[3] Brzezina M.:
Appell type transformation for the Kolmogorov type operator. Math. Nachr. 169 (1994), 59-67.
MR 1292797
[4] Brzezina M., Šimůnková M.:
On the harmonic morphism for the Kolmogorov type operators. in: Potential Theory - ICPT 94, Walter de Gruyter, Berlin, 1996, pp.341-357.
MR 1404718
[5] Akin Ö., Leutwiler H.:
On the invariance of the solutions of the Weinstein equation under Möbius transformations. in: Classical and Modern Potential Theory and Applications (ed. K. GowriSankaran et al.), Kluwer Academic Publishers, 1994, pp.19-29.
MR 1321603 |
Zbl 0869.31005