Previous |  Up |  Next

Article

Keywords:
set-valued mapping; l.s.c. mapping; $\Sigma$-product; selection
Summary:
Every lower semi-continuous closed-and-convex valued mapping $\Phi : X\rightarrow 2^{Y}$, where $X$ is a $\Sigma$-product of metrizable spaces and $Y$ is a Hilbert space, has a single-valued continuous selection. This improves an earlier result of the author.
References:
[1] Bing R.H.: Metrization of topological spaces. Canad. J. Math. 3 (1951), 175-186. MR 0043449 | Zbl 0042.41301
[2] Choban M., Nedev S.: Continuous selections for mappings with generalized ordered domain. Math. Balkanica, New Series 11 , Fasc. 1-2 (1997), 87-95. MR 1606612 | Zbl 0943.46003
[3] Corson H.: Normality of subsets of product spaces. Amer. J. Math. 81 (1959), 785-796. MR 0107222
[4] Dieudonné J.: Une généralisation des espaces compacts. J. de Math. Pures et Appl. 23 (1944), 65-76. MR 0013297
[5] Engelking R.: General Topology. PWN, Warszawa, 1985. Zbl 0684.54001
[6] Gul'ko S.P.: Properties of sets lying in $\Sigma$-products. Dokl. AN SSSR, 1977.
[7] Ishii T.: Paracompactness of topological completions. Fund. Math. 92 (1976), 65-77. MR 0418039 | Zbl 0354.54009
[8] Katětov M.: On the extension of locally finite coverings (in Russian). Colloq. Math. 6 (1958), 145-151. MR 0103450
[9] Michael E.: Continuous selections: I. Ann. Math. 63 (1956), 562-590. MR 0077107 | Zbl 0071.15902
[10] Rudin M.E.: $\Sigma$-products of metric spaces are normal. preprint (see [5], the problems to Chapter 4).
[11] Shishkov I.: Extensions of l.s.c. mappings into reflexive Banach spaces. Set-Valued Analysis, to appear. MR 1888457 | Zbl 1018.54012
[12] Shishkov I.: Selections of l.s.c. mappings into Hilbert spaces. Compt. rend. Acad. Bulg. Sci. 53.7 (2000). MR 1779519
Partner of
EuDML logo