Article
Keywords:
set-valued mapping; l.s.c. mapping; $\Sigma$-product; selection
Summary:
Every lower semi-continuous closed-and-convex valued mapping $\Phi : X\rightarrow 2^{Y}$, where $X$ is a $\Sigma$-product of metrizable spaces and $Y$ is a Hilbert space, has a single-valued continuous selection. This improves an earlier result of the author.
References:
[2] Choban M., Nedev S.:
Continuous selections for mappings with generalized ordered domain. Math. Balkanica, New Series 11 , Fasc. 1-2 (1997), 87-95.
MR 1606612 |
Zbl 0943.46003
[3] Corson H.:
Normality of subsets of product spaces. Amer. J. Math. 81 (1959), 785-796.
MR 0107222
[4] Dieudonné J.:
Une généralisation des espaces compacts. J. de Math. Pures et Appl. 23 (1944), 65-76.
MR 0013297
[5] Engelking R.:
General Topology. PWN, Warszawa, 1985.
Zbl 0684.54001
[6] Gul'ko S.P.: Properties of sets lying in $\Sigma$-products. Dokl. AN SSSR, 1977.
[8] Katětov M.:
On the extension of locally finite coverings (in Russian). Colloq. Math. 6 (1958), 145-151.
MR 0103450
[10] Rudin M.E.: $\Sigma$-products of metric spaces are normal. preprint (see [5], the problems to Chapter 4).
[11] Shishkov I.:
Extensions of l.s.c. mappings into reflexive Banach spaces. Set-Valued Analysis, to appear.
MR 1888457 |
Zbl 1018.54012
[12] Shishkov I.:
Selections of l.s.c. mappings into Hilbert spaces. Compt. rend. Acad. Bulg. Sci. 53.7 (2000).
MR 1779519