[1] Aparicio A., Oca na F., Paya R., Rodriguez A.: 
A non-smooth extension of Fréchet differentiability of the norm with applications to numerical ranges. Glasgow Math. J. 28 (1986), 121-137. 
MR 0848419[2] Becerra J., Rodriguez A.: 
The geometry of convex transitive Banach spaces. Bull. London Math. Soc. 31 (1999), 323-331. 
MR 1673411 | 
Zbl 0921.46006[3] Bourgin R.D.: 
Geometric aspects of convex sets with the Radon-Nikodym property. Lecture Notes in Mathematics 993, Springer-Verlag, Berlin, 1983. 
MR 0704815 | 
Zbl 0512.46017[4] Cabello F.: 
Maximal symmetric norms on Banach spaces. Proc. Roy. Irish Acad. 98A (1998), 121-130. 
MR 1759425 | 
Zbl 0941.46008[5] Day M.M.: 
Normed linear spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete 21, Springer-Verlag, Berlin, 1973. 
MR 0344849 | 
Zbl 0583.00016[6] Deville R., Godefroy G., Zizler V.: 
Smoothness and renormings in Banach spaces. Pitman Monographs and Surveys in Pure and Applied Math. 64, New York. 1993. 
MR 1211634 | 
Zbl 0782.46019[7] Finet C.: 
Uniform convexity properties of norms on superreflexive Banach spaces. Israel J. Math. 53 (1986), 81-92. 
MR 0861899[8] Franchetti C., Paya R.: 
Banach spaces with strongly subdifferentiable norm. Bolletino U.M.I. 7-B (1993), 45-70. 
MR 1216708 | 
Zbl 0779.46021[9] Giles J.R., Gregory D.A., Sims B.: 
Characterisation of normed linear spaces with Mazur's intersection property. Bull. Austral. Math. Soc. 18 (1978), 105-123. 
MR 0493266 | 
Zbl 0373.46028[10] Kalton N.J., Wood G.V.: 
Orthonormal systems in Banach spaces and their applications. Math. Proc. Cambridge Philos. Soc. 79 (1976), 493-510. 
MR 0402471 | 
Zbl 0327.46022[11] Skorik A., Zaidenberg M.: 
On isometric reflexions in Banach spaces. Math. Physics, Analysis, Geometry 4 (1997), 212-247. 
MR 1484353