Article
Keywords:
MAD family; Vietoris topology; continuous selection
Summary:
We show that if $\Cal A$ is an uncountable AD (almost disjoint) family of subsets of $\omega$ then the space $\Psi(\Cal A)$ does not admit a continuous selection; moreover, if $\Cal A$ is maximal then $\Psi(\Cal A)$ does not even admit a continuous selection on pairs, answering thus questions of T.  Nogura.
References:
                        
[A{&}al] G. Artico, U. Marconi, J. Pelant, L. Rotter and M. Tkachenko: 
Selections and suborderability. preprint. 
MR 1971236[BDS] Balcar B., Dočkálková J., Simon P.: 
Almost disjoint families of countable sets. Colloq. Math. Soc. János Bolyai, Finite and Infinite Sets 37 59-88 (1984). 
MR 0818228[vD1] van Douwen E.K.: 
Mappings from hyperspaces and convergent sequences. Topology Appl. 34 35-45 (1990). 
MR 1035458 | 
Zbl 0715.54004[vD2] van Douwen E.: 
The integers and topology. in K. Kunen, J. Vaughn, editors, Handbook of Set Theoretic Topology 111-167 North-Holland (1984). 
MR 0776622 | 
Zbl 0561.54004[Ku] Kunen K.: 
Set Theory: An Introduction to Independence Proofs. North-Holland Amsterdam (1980). 
MR 0597342 | 
Zbl 0443.03021[vMW] van Mill J., Wattel E.: 
Selections and orderability. Proc. Amer. Math. Soc. 83 601-605 (1981). 
MR 0627702 | 
Zbl 0473.54010[Mi] Michael E.: 
Topologies on spaces of subsets. Trans. Amer. Math. Soc. 71 152-182 (1951). 
MR 0042109 | 
Zbl 0043.37902[Mr] Mrówka S.: 
Some set-theoretic constructions in topology. Fund. Math. 94 83-92 (1977). 
MR 0433388[Si] Simon P.: 
A compact Fréchet space whose square is not Fréchet. Comment. Math. Univ. Carolinae 21 749-753 (1980). 
MR 0597764 | 
Zbl 0466.54022