Article
Keywords:
independent random elements; copy of $c_{0}$; Pettis integrable function; perfect measure space
Summary:
In this note we investigate the relationship between the convergence of the sequence $\{S_{n}\}$ of sums of independent random elements of the form $S_{n}=\sum_{i=1}^{n}\varepsilon_{i}x_{i}$ (where $\varepsilon_{i}$ takes the values $\pm\,1$ with the same probability and $x_{i}$ belongs to a real Banach space $X$ for each $i\in \Bbb N$) and the existence of certain weakly unconditionally Cauchy subseries of $\sum_{n=1}^{\infty}x_{n}$.
References:
[1] Cembranos P., Mendoza J.:
Banach Spaces of Vector-Valued Functions. LNM 1676, Springer, 1997.
MR 1489231 |
Zbl 0902.46017
[2] Díaz S., Fernández A., Florencio M., Paúl P.J.:
Complemented copies of $c_{0}$ in the space of Pettis integrable functions. Quaestiones Math. 16 (1993), 61-66.
MR 1217475
[3] Diestel J.:
Sequences and series in Banach spaces. GTM 92, Springer-Verlag, New York-Berlin-Heidelberg-Tokyo, 1984.
MR 0737004
[4] Diestel J., Uhl J.:
Vector measures. Math Surveys 15, Amer. Math. Soc., Providence, 1977.
MR 0453964 |
Zbl 0521.46035
[6] Freniche F.J.:
Embedding $c_{0}$ in the space of Pettis integrable functions. Quaestiones Math. 21 (1998), 261-267.
MR 1701785 |
Zbl 0963.46025
[7] Halmos P.R.:
Measure Theory. GTM 18, Springer, New York-Berlin-Heidelberg-Barcelona, 1950.
MR 0033869 |
Zbl 0283.28001
[8] Kwapień S.:
On Banach spaces containing $c_{0}$. Studia Math. 52 (1974), 187-188.
MR 0356156
[9] Vakhania N.N., Tarieladze V.I., Chobanian S.A.:
Probability Distributions on Banach Spaces. D. Reidel Publishing Company, Dordrecht, 1987.
MR 1435288