Article
Keywords:
Besicovitch-Orlicz space; almost periodic function; reflexivity; duality
Summary:
In [6], the classical Riesz representation theorem is extended to the class of Besicovitch space of almost periodic functions $B^{q}$\,a.p., $q\in ] 1,+\infty [$ . It is also shown that this space is reflexive. We shall consider here such results in the context of Orlicz spaces, namely in the class of Besicovitch-Orlicz space of almost periodic functions $B^{\phi }$\,a.p., where $\phi $ is an Orlicz function.
References:
[1] Albrycht J.:
The theory of Marcinkiewicz Orlicz spaces. Dissertationes Math., No. 27 (1962).
MR 0139935 |
Zbl 0101.32803
[4] Hillmann T.R.:
Besicovitch-Orlicz spaces of almost periodic functions. Real and Stochastic Analysis, Wiley, 1986, pp. 119-167.
MR 0856581 |
Zbl 0656.46020
[5] Hudzik H., Kaminska A.:
On uniformly convexifiable and $B$-convex Musielak-Orlicz spaces. Comment. Math. 25 (1985), 59-75.
MR 0795121 |
Zbl 0588.46022
[6] Iannacci R.:
About reflexivity of $B^qa.p.$ spaces of almost periodic function. Rend. Mat. Appl. (7) 13 3 543-559 (1993).
MR 1276259
[7] Krasnosel'skii M.A., Rutickii Ya.B.:
Convex function and Orlicz spaces (translation). P. Noodhoff Ltd., Groningen, 1961.
MR 0126722
[8] Morsli M.:
On some convexity properties of the Besicovitch-Orlicz space of almost periodic functions. Comment. Math. 34 (1994), 137-152.
MR 1325081 |
Zbl 0839.46012
[9] Morsli M.: Espace de Bésicovitch Orlicz de fonctions presque périodiques. Structure générale et géométrie. Thèse de Doctorat, 1996.
[10] Morsli M.:
On modular approximation property in the Besicovitch-Orlicz space of almost periodic functions. Comment. Math. Univ. Carolinae 38.3 (1997), 485-496.
MR 1485070 |
Zbl 0937.46009