| Title:
|
The Jordan normal form of higher order Osserman algebraic curvature tensors (English) |
| Author:
|
Gilkey, Peter |
| Author:
|
Ivanova, Raina |
| Language:
|
English |
| Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
| ISSN:
|
0010-2628 (print) |
| ISSN:
|
1213-7243 (online) |
| Volume:
|
43 |
| Issue:
|
2 |
| Year:
|
2002 |
| Pages:
|
231-242 |
| . |
| Category:
|
math |
| . |
| Summary:
|
We construct new examples of algebraic curvature tensors so that the Jordan normal form of the higher order Jacobi operator is constant on the Grassmannian of subspaces of type $(r,s)$ in a vector space of signature $(p,q)$. We then use these examples to establish some results concerning higher order Osserman and higher order Jordan Osserman algebraic curvature tensors. (English) |
| Keyword:
|
higher order Jacobi operator |
| Keyword:
|
Osserman algebraic curvature tensors |
| Keyword:
|
Jordan Osserman algebraic curvature tensors |
| MSC:
|
53B20 |
| idZBL:
|
Zbl 1090.53022 |
| idMR:
|
MR1922124 |
| . |
| Date available:
|
2009-01-08T19:21:29Z |
| Last updated:
|
2012-04-30 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119316 |
| . |
| Reference:
|
[1] Blažić N., Bokan N., Gilkey P.: A note on Osserman Lorentzian manifolds.Bull. London Math. Soc. 29 (1997), 227-230. MR 1426003 |
| Reference:
|
[2] Blažić N., Bokan N., Gilkey P., Rakić Z.: Pseudo-Riemannian Osserman manifolds.J. Balkan Society of Geometers l2 (1997), 1-12. MR 1662081 |
| Reference:
|
[3] Bonome A., Castro R., García-Río E., Hervella L., Vázquez-Lorenzo R.: Nonsymmetric Osserman indefinite Kähler manifolds.Proc. Amer. Math. Soc. 126 (1998), 2763-2769. MR 1476121 |
| Reference:
|
[4] Chi Q.-S.: A curvature characterization of certain locally rank-one symmetric spaces.J. Differential Geom. 28 (1988), 187-202. Zbl 0654.53053, MR 0961513 |
| Reference:
|
[5] Dotti I., Druetta M.: Negatively curved homogeneous Osserman spaces.Differential Geom. Appl. 11 (1999), 163-178. Zbl 0970.53031, MR 1712119 |
| Reference:
|
[6] García-Rió E., Kupeli D., Vázquez-Abal M.E.: On a problem of Osserman in Lorentzian geometry.Differential Geom. Appl. 7 (1997), 85-100. MR 1441921 |
| Reference:
|
[7] García-Rió E., Vázquez-Abal M.E., Vázquez-Lorenzo R.: Nonsymmetric Osserman pseudo-Riemannian manifolds.Proc. Amer. Math. Soc. 126 (1998),2771-2778. MR 1476128 |
| Reference:
|
[8] Gilkey P.: Manifolds whose curvature operator has constant eigenvalues at the basepoint.J. Geom. Anal. 4 (1994), 155-158. Zbl 0797.53010, MR 1277503 |
| Reference:
|
[9] Gilkey P.: Algebraic curvature tensors which are $p$ Osserman.to appear in Differential Geom. Appl. Zbl 1031.53034, MR 1836275 |
| Reference:
|
[10] Gilkey P.: Geometric Properties of Natural Operators Defined by the Riemann Curvature Tensor.World Scientific, 2002. Zbl 1007.53001, MR 1877530 |
| Reference:
|
[11] Gilkey P., Ivanova R.: The Jordan normal form of Osserman algebraic curvature tensors.Results Math. 40 (2001), 192-204. Zbl 0999.53014, MR 1860368 |
| Reference:
|
[12] Gilkey P., Stavrov I.: Curvature tensors whose Jacobi or Szabó operator is nilpotent on null vectors.Bull. London Math. Soc., to appear. Zbl 1043.53018, MR 1924351 |
| Reference:
|
[13] Gilkey P., Stanilov G., Videv V.: Pseudo-Riemannian manifolds whose generalized Jacobi operator has constant characteristic polynomial.J. Geom. 62 (1998), 144-153. Zbl 0906.53046, MR 1631494 |
| Reference:
|
[14] Gilkey P., Swann A., Vanhecke L.: Isoparametric geodesic spheres and a conjecture of Osserman regarding the Jacobi operator.Quart. J. Math. Oxford Ser. 46 (1995), 299-320. MR 1348819 |
| Reference:
|
[15] Osserman R.: Curvature in the eighties.Amer. Math. Monthly 97 (1990), 731-756. Zbl 0722.53001, MR 1072814 |
| Reference:
|
[16] Stanilov G.: Curvature operators based on the skew-symmetric curvature operator and their place in Differential Geometry.preprint, 2000. |
| Reference:
|
[17] Stanilov G., Videv V.: On Osserman conjecture by characteristical coefficients.Algebras Groups Geom. 12 (1995), 157-163. Zbl 0827.53042, MR 1325979 |
| Reference:
|
[18] Stanilov G., Videv V.: Four-dimensional pointwise Osserman manifolds.Abh. Math. Sem. Univ. Hamburg 68 (1998), 1-6. Zbl 0980.53058, MR 1658408 |
| . |